ARMv8Linux内核head.S主要工作内容:

1、 从el2特权级退回到el1

2、 确认处理器类型

3、 计算内核镜像的起始物理地址及物理地址与虚拟地址之间的偏移

4、 验证设备树的地址是否有效

5、 创建页表,用于启动内核

6、 设置CPU(cpu_setup),用于使能MMU

7、 使能MMU

8、 交换数据段

9、 跳转到start_kernel函数继续运行。

/*

*Low-level CPU initialisation

*Based on arch/arm/kernel/head.S

*

*Copyright (C) 1994-2002 Russell King

*Copyright (C) 2003-2012 ARM Ltd.

*Authors:     Catalin Marinas<catalin.marinas@arm.com>

*             Will Deacon<will.deacon@arm.com>

*

*This program is free software; you can redistribute it and/or modify

* itunder the terms of the GNU General Public License version 2 as

*published by the Free Software Foundation.

*

*This program is distributed in the hope that it will be useful,

*but WITHOUT ANY WARRANTY; without even the implied warranty of

*MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the

*GNU General Public License for more details.

*

*You should have received a copy of the GNU General Public License

*along with this program.  If not, see<http://www.gnu.org/licenses/>.

*/

#include <linux/linkage.h>

#include <linux/init.h>

#include <asm/assembler.h>

#include <asm/ptrace.h>

#include <asm/asm-offsets.h>

#include <asm/memory.h>

#include <asm/thread_info.h>

#include <asm/pgtable-hwdef.h>

#include <asm/pgtable.h>

#include <asm/page.h>

/*

*swapper_pg_dir is the virtual address of the initial page table. We place

*the page tables 3 * PAGE_SIZE below KERNEL_RAM_VADDR. The idmap_pg_dir has

* 2pages and is placed below swapper_pg_dir.

*/

#define KERNEL_RAM_VADDR      (PAGE_OFFSET + TEXT_OFFSET)

#if (KERNEL_RAM_VADDR & 0xfffff) !=0x80000

#error KERNEL_RAM_VADDR must start at0xXXX80000

#endif

#define SWAPPER_DIR_SIZE  (3 * PAGE_SIZE)

#define IDMAP_DIR_SIZE                (2 * PAGE_SIZE)

.globl       swapper_pg_dir

.equ swapper_pg_dir, KERNEL_RAM_VADDR -SWAPPER_DIR_SIZE

.globl       idmap_pg_dir

.equ idmap_pg_dir, swapper_pg_dir - IDMAP_DIR_SIZE

.macro     pgtbl, ttb0, ttb1, phys

add  \ttb1, \phys, #TEXT_OFFSET - SWAPPER_DIR_SIZE

sub   \ttb0, \ttb1, #IDMAP_DIR_SIZE

.endm

#ifdef CONFIG_ARM64_64K_PAGES

#define BLOCK_SHIFT    PAGE_SHIFT

#define BLOCK_SIZE       PAGE_SIZE

#else

#define BLOCK_SHIFT    SECTION_SHIFT

#define BLOCK_SIZE       SECTION_SIZE

#endif

#define KERNEL_START KERNEL_RAM_VADDR

#define KERNEL_END     _end

/*

*Initial memory map attributes.

*/

#ifndef CONFIG_SMP

#define PTE_FLAGS         PTE_TYPE_PAGE | PTE_AF

#define PMD_FLAGS       PMD_TYPE_SECT | PMD_SECT_AF

#else

#define PTE_FLAGS         PTE_TYPE_PAGE | PTE_AF | PTE_SHARED

#define PMD_FLAGS       PMD_TYPE_SECT | PMD_SECT_AF | PMD_SECT_S

#endif

#ifdef CONFIG_ARM64_64K_PAGES

#define MM_MMUFLAGS      PTE_ATTRINDX(MT_NORMAL) | PTE_FLAGS

#define IO_MMUFLAGS PTE_ATTRINDX(MT_DEVICE_nGnRE) | PTE_XN | PTE_FLAGS

#else

#define MM_MMUFLAGS      PMD_ATTRINDX(MT_NORMAL) | PMD_FLAGS

#define IO_MMUFLAGS PMD_ATTRINDX(MT_DEVICE_nGnRE) | PMD_SECT_XN | PMD_FLAGS

#endif

/*

*Kernel startup entry point.

*---------------------------

*

*The requirements are:

*   MMU= off, D-cache = off, I-cache = on or off,

*   x0 =physical address to the FDT blob.

*

*This code is mostly position independent so you call this at

*__pa(PAGE_OFFSET + TEXT_OFFSET).

*

*Note that the callee-saved registers are used for storing variables

*that are useful before the MMU is enabled. The allocations are described

* inthe entry routines.

*/

__HEAD                    //这是一个宏定义;#define__HEAD          .section         ".head.text","ax"; .section是伪指令ax代表允许执行

/*

* DO NOT MODIFY. Image header expected byLinux boot-loaders.

*/

b       stext                                   //branch to kernel start, magic

.long        0                                 //reserved

.quad       TEXT_OFFSET                   // Image load offset from start of RAM

.quad       0                                 //reserved

.quad       0                                 //reserved

ENTRY(stext)

mov x21, x0                               //x21=FDT,x21中保存的是由Uboot传进来的,设备树在内存中的地址。

bl      el2_setup                          //Drop to EL1,从当前特权级跳入EL1,具体函数内容请看下面el2_setup函数。

mrs  x22, midr_el1                   //x22=cpuid,x22中保存着cpuid,用以判断运行当前这段代码的CPU是哪一个。

mov x0, x22                               //x0=cpuid,用于传送参数给函数lookup_processor_type。

bl      lookup_processor_type //查看处理器类型,见后面具体定义

mov x23, x0                               //x23=current cpu_table       把函数lookup_processor_type返回的cpu_table地址给x23

cbz   x23, __error_p                          // invalid processor (x23=0)?

bl      __calc_phys_offset                 //计算起始物理地址,返回的值中x24=PHYS_OFFSET, x28=PHYS_OFFSET-PAGE_OFFSET

bl      __vet_fdt                                   //返回后的x21中要么是无效保存0,要么是有效地fdt地址

bl      __create_page_tables            //为内核创建临时页表 x25=TTBR0,x26=TTBR1,本函数所建立的页表在后面paging_init会销毁重建。

/*

* The following calls CPU specific code in aposition independent

* manner. See arch/arm64/mm/proc.S fordetails. x23 = base of

* cpu_info structure selected bylookup_processor_type above.

* On return, the CPU will be ready for the MMUto be turned on and

* the TCR will have been set.

*/

ldr    x27, __switch_data                 //由函数__enable_mmu中调用,此时MMU已经开启

adr   lr, __enable_mmu           //返回“地址无关”的地址,由函数__cpu_setup返回时调用,该函数中执行brx27调用__switch_data函数

ldr    x12, [x23,#CPU_INFO_SETUP]

add  x12, x12, x28                    // __virt_to_phys

br     x12                             //x12中存放的是cpu_info结构体的cpu_setup字段

//该字段在cpu_table中被初始化为__cpu_setup函数,所里这里调用cpu_setup,不在本文件中暂不分析

//该函数返回后会把lr给pc,即直接调用上面的__enable_mmu

ENDPROC(stext)

/*

* If we're fortunate enough to boot at EL2,ensure that the world is

* sane before dropping to EL1.

*/

ENTRY(el2_setup)

mrs  x0, CurrentEL                                     //获得当前特权级

cmp x0, #PSR_MODE_EL2t                      //对比当前特权级是否为EL2

ccmp        x0,#PSR_MODE_EL2h, #0x4, ne   //NZCV= if notequal then CMP(x0,# PSR_MODE_EL2h) else 0x4

b.eq 1f

ret

/* Hyp configuration. */

1:     mov x0, #(1 << 31)                   // 64-bit EL1,配置hypervisor模式控制寄存器

msr  hcr_el2, x0

/* Generic timers. */               //配置通用时钟控制寄存器,使能EL1物理时钟

mrs  x0, cnthctl_el2

orr   x0, x0, #3                          // Enable EL1 physicaltimers

msr  cnthctl_el2, x0

/* Populate ID registers. */            //把ID寄存器移植到相应的虚拟化id配置寄存器中

mrs  x0, midr_el1

mrs  x1, mpidr_el1

msr  vpidr_el2, x0

msr  vmpidr_el2, x1

/* sctlr_el1 */                           //把0x30d00800赋值给sctlr_el1寄存器

mov x0, #0x0800                      // Set/clear RES{1,0} bits

movk        x0,#0x30d0, lsl #16

msr  sctlr_el1, x0

/* Coprocessor traps. */                 //关闭协处理器异常陷入到EL2

mov x0, #0x33ff

msr  cptr_el2, x0                      // Disable copro. traps toEL2

#ifdef CONFIG_COMPAT

msr  hstr_el2, xzr                      // Disable CP15 traps toEL2

#endif

/* spsr */

mov x0, #(PSR_F_BIT |PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\

PSR_MODE_EL1h)

msr  spsr_el2, x0              //设置状态寄存器,退出EL2,进入EL1

msr  elr_el2, lr

eret

ENDPROC(el2_setup)

.align        3

2:     .quad       .

.quad       PAGE_OFFSET

//如果不是对称多处理(SMP)系统,则下面的次级CPU初始化功能都不做

#ifdef CONFIG_SMP

         .pushsection    .smp.pen.text, "ax"

         .align        3

1:     .quad       .

         .quad       secondary_holding_pen_release

 

         /*

          * This provides a "holding pen" forplatforms to hold all secondary

          * cores are held until we're ready for them toinitialise.

          */

ENTRY(secondary_holding_pen)

         bl      el2_setup                          //Drop to EL1

         mrs  x0, mpidr_el1

         and  x0, x0, #15                        //CPU number

         adr   x1, 1b

         ldp   x2, x3, [x1]

         sub   x1, x1, x2

         add  x3, x3, x1

pen: ldr    x4, [x3]

         cmp x4, x0

         b.eq secondary_startup

         wfe

         b       pen

ENDPROC(secondary_holding_pen)

         .popsection

 

ENTRY(secondary_startup)

         /*

          * Common entry point for secondary CPUs.

          */

         mrs  x22, midr_el1                   //x22=cpuid

         mov x0, x22

         bl      lookup_processor_type

         mov x23, x0                               //x23=current cpu_table

         cbz   x23, __error_p                          // invalid processor (x23=0)?

 

         bl      __calc_phys_offset                 // x24=phys offset

         pgtbl        x25, x26, x24                    // x25=TTBR0, x26=TTBR1

         ldr    x12, [x23, #CPU_INFO_SETUP]

         add  x12, x12, x28                    //__virt_to_phys

         blr    x12                             //initialise processor

 

         ldr    x21, =secondary_data

         ldr    x27, =__secondary_switched         // address to jump to after enablingthe MMU

         b       __enable_mmu

ENDPROC(secondary_startup)

 

ENTRY(__secondary_switched)

         ldr    x0, [x21]                   //get secondary_data.stack

         mov sp, x0

         mov x29, #0

         b       secondary_start_kernel

ENDPROC(__secondary_switched)

#endif      /* CONFIG_SMP */

/*

* Setup common bits before finally enablingthe MMU. Essentially this is just

* loading the page table pointer and vectorbase registers.

*

* On entry to this code, x0 must contain theSCTLR_EL1 value for turning on

* the MMU.

*/

__enable_mmu:

ldr    x5, =vectors

msr  vbar_el1, x5

msr  ttbr0_el1, x25                  // load TTBR0

msr  ttbr1_el1, x26                  // load TTBR1

isb

b       __turn_mmu_on

ENDPROC(__enable_mmu)

/*

* Enable the MMU. This completely changes thestructure of the visible memory

* space. You will not be able to traceexecution through this.

*

* x0  = system control register

*  x27 =*virtual* address to jump to upon completion

*

* other registers depend on the functioncalled upon completion

*/

.align        6

__turn_mmu_on:

msr  sctlr_el1, x0

isb

br     x27

ENDPROC(__turn_mmu_on)

/*

* Calculate the start of physical memory.

*/

__calc_phys_offset:                                  //计算起始物理地址值

adr   x0, 1f                                  //把标号1处地址给x0,因为adr指令是相对当前pc寄存器的偏移,而pc即物理地址所以这里是1f处的物理地址

ldp   x1, x2, [x0]                        //把标号1处的前八字节给x1,后八字节给x2

sub   x28, x0, x1                        // 利用x0-x1计算虚拟物理地址之间的偏移。x28 = PHYS_OFFSET - PAGE_OFFSET,

add  x24, x2, x28                      // x24 = PHYS_OFFSET,计算出起始物理地址给x24

ret

ENDPROC(__calc_phys_offset)

.align 3

1:     .quad       .

.quad       PAGE_OFFSET

/*

* Macro to populate the PGD for thecorresponding block entry in the next

* level (tbl) for the given virtual address.

*

* Preserves:  pgd,tbl, virt

* Corrupts:    tmp1,tmp2

*/

.macro     create_pgd_entry,pgd, tbl, virt, tmp1, tmp2

lsr     \tmp1, \virt,#PGDIR_SHIFT

and  \tmp1, \tmp1, #PTRS_PER_PGD- 1       // PGD index

orr   \tmp2, \tbl, #3                          // PGD entry tabletype

str    \tmp2, [\pgd,\tmp1, lsl #3]

.endm

/*

* Macro to populate block entries in the pagetable for the start..end

* virtual range (inclusive).

*

* Preserves:  tbl,flags

* Corrupts:    phys,start, end, pstate

*/

.macro     create_block_map,tbl, flags, phys, start, end, idmap=0

lsr     \phys, \phys,#BLOCK_SHIFT

.if     \idmap

and  \start, \phys,#PTRS_PER_PTE - 1 // table index

.else

lsr     \start, \start,#BLOCK_SHIFT

and  \start, \start,#PTRS_PER_PTE - 1 // table index

.endif

orr   \phys, \flags,\phys, lsl #BLOCK_SHIFT // table entry

.ifnc \start,\end

lsr     \end, \end,#BLOCK_SHIFT

and  \end, \end,#PTRS_PER_PTE - 1             // table endindex

.endif

9999:       str    \phys, [\tbl,\start, lsl #3]                // storethe entry

.ifnc \start,\end

add  \start, \start, #1                       // next entry

add  \phys, \phys,#BLOCK_SIZE             // next block

cmp \start, \end

b.ls   9999b

.endif

.endm

/*

*设置初始化页表。我们只设置使内核能跑起来的最少数量的页表

*以下内容是必须的

*   - 一致性映射用于使能MMU(低地址,TTBR0)

*   -前几MB的内核线性映射包含FDT块(TTBR1)

* 为了解释更清楚,找了个网图,该图地址从下网上递增

*/

//内核镜像里的所有符号都是虚拟地址,在完成了基本初始化,内核需要跳到C语言的start_kernel运行,

//此时如果不开启MMU,则符号的地址当成物理地址,直接使用会导致内核崩溃。

//ARMv8页表建立过程请参看我的另一篇博文;ARMv8(aarch64)页表建立过程详细分析

__create_page_tables:

pgtbl        x25,x26, x24                    //idmap_pg_dir and swapper_pg_dir addresses看前面pgtbl宏,

//x25:ttbr0(两个page), x26:ttbr1(3个page)  x24:内核起始物理地址。

//这里宏的意思是,在上图KERNEL_RAM_PADDR下面,PHYS_OFFSET上面开辟3个页面,起始地址给x26,

//然后再开辟2个页面,起始地址给x25

/*

* Clear the idmap andswapper page tables.

*/

mov x0, x25

add  x6, x26,#SWAPPER_DIR_SIZE                 //以下内容就是清空上面申请的五个页面

1:     stp   xzr, xzr, [x0], #16

stp   xzr, xzr, [x0],#16

stp   xzr, xzr, [x0],#16

stp   xzr, xzr, [x0],#16

cmp x0, x6

b.lo  1b

ldr    x7, =MM_MMUFLAGS            //内核中该标号定义是:#defineMM_MMUFLAGS         PTE_ATTRINDX(MT_NORMAL)| PTE_FLAGS

//#define MT_NORMAL                 4; #definePTE_FLAGS         PTE_TYPE_PAGE | PTE_AF |PTE_SHARED

/*

* Create the identitymapping.

*/

add  x0, x25,#PAGE_SIZE                // section tableaddress

adr   x3, __turn_mmu_on                // virtual/physical address

create_pgd_entry x25, x0, x3, x5, x6

create_block_map x0, x7, x3, x5, x5, idmap=1

/*

* Map the kernelimage (starting with PHYS_OFFSET).

*/

add  x0, x26,#PAGE_SIZE                // section tableaddress

mov x5, #PAGE_OFFSET

create_pgd_entry x26, x0, x5, x3, x6

ldr    x6, =KERNEL_END- 1

mov x3, x24                               // phys offset

create_block_map x0, x7, x3, x5, x6

/*

* Map the FDT blob(maximum 2MB; must be within 512MB of

* PHYS_OFFSET).

*/

mov x3, x21                               // FDT physaddress

and  x3, x3, #~((1<< 21) - 1)  // 2MB aligned

mov x6, #PAGE_OFFSET

sub   x5, x3, x24                        // subtract PHYS_OFFSET

tst    x5, #~((1<< 29) - 1)                  //within 512MB?

csel  x21, xzr, x21, ne               // zero the FDT pointer

b.ne 1f

add  x5, x5, x6                  // __va(FDT blob)

add  x6, x5, #1<< 21               // 2MB for theFDT blob

sub   x6, x6, #1                          // inclusive range

create_block_map x0, x7, x3, x5, x6

1:

ret

ENDPROC(__create_page_tables)

.ltorg

.align        3

.type        __switch_data,%object

__switch_data:                         //先定义一些标号

.quad       __mmap_switched

.quad       __data_loc                       // x4

.quad       _data                                 // x5

.quad       __bss_start                       // x6

.quad       _end                                   // x7

.quad       processor_id                    // x4

.quad       __fdt_pointer                   // x5

.quad       memstart_addr                        // x6

.quad       init_thread_union+ THREAD_START_SP // sp

/*

*该函数在MMU开启后执行,用于设置C语言运行时的环境,例如执行重定位,设置堆栈,清空BSS段等

*/

__mmap_switched:

adr   x3, __switch_data+ 8             //x3指向__data_loc起始处

ldp   x4, x5, [x3], #16                       //x4=__data_loc;x5=_data

ldp   x6, x7, [x3], #16                       //x6=__bss_start;x7=_end

/*

这段代码比较难懂,直接翻译过来如下:

if(__data_loc==_data)

b       2f

else

if _data==__bss_start

b       2f

else

memcpy(_data, __data_loc,8)

效果等同于:

if (__data_loc == _data || _data != _bass_start)

memcpy(_data, __data_loc, 8);

*/

cmp x4, x5                                 // Copy datasegment if needed,

1:     ccmp        x5, x6, #4, ne

b.eq 2f

ldr    x16, [x4], #8

str    x16, [x5], #8

b       1b

2:

1:     cmp x6, x7

b.hs 2f

str    xzr, [x6], #8                       // Clear BSS

b       1b

2:

ldp   x4, x5, [x3], #16

ldr    x6, [x3], #8

ldr    x16, [x3]

mov sp, x16                      //设置栈指针

str    x22, [x4]                   // Save processor ID

str    x21, [x5]                   // Save FDT pointer

str    x24, [x6]                   // Save PHYS_OFFSET

mov x29, #0

b       start_kernel             //跳到start_kernel继续运行

ENDPROC(__mmap_switched)

/*

* Exception handling. Something went wrong andwe can't proceed. We ought to

* tell the user, but since we don't have anyguarantee that we're even

* running on the right architecture, we dovirtually nothing.

*/

__error_p:

ENDPROC(__error_p)

__error:

1:     nop

b       1b

ENDPROC(__error)

/*

* This function gets the processor ID in w0and searches the cpu_table[] for

* a match. It returns a pointer to the structcpu_info it found. The

* cpu_table[] must end with an empty (allzeros) structure.

*

* This routine can be called via C code and itneeds to work with the MMU

* both disabled and enabled (the offset iscalculated automatically).

*/

ENTRY(lookup_processor_type)

adr   x1,__lookup_processor_type_data              //把标号__lookup_processor_type_data的虚拟地址给x1,见下面标号内容

ldp   x2, x3, [x1]                                                           //把x1地址处的内容前16字节分别给x3,x2。X2中存储前八字节

sub   x1, x1, x2                  // get offset between VA andPA   x1减去x2就是虚拟地址与物理地址的差值,

//再加上x3,就是cpu_table结构体在内存中的物理地址,在赋值给x3.

add  x3, x3, x1                  // convert VA to PA

1:

/*结构体cpu_info内容:

*struct cpu_info {

*unsigned int         cpu_id_val;

*unsigned int         cpu_id_mask;

*const char   *cpu_name;

*unsigned long     (*cpu_setup)(void);};

*/

ldp   w5, w6, [x3]                     // load cpu_id_val andcpu_id_mask 把cpu_table这个结构体的前八字节分别给w6,w5,w5存储前4字节。即cpu id

cbz   w5, 2f                                // end of list?,如果w5寄存器值为0,则跳转到前面2标号处

and  w6, w6, w0                       //把cpu id mask与w0寄存器(CPUID)做与运算,w0就是前面mrs        x22,midr_el1执行结果,即cpuid

cmp w5, w6                               //对比操作系统中设定的CPUID与实际的处理器ID是否相同

b.eq 3f                                        //相同则跳转到标号3处

add  x3, x3,#CPU_INFO_SZ   //否则把x3的值加上sizeof(cpuinfo)【=sizeof(cpu_table)】,再跳转到后面标号1处做比对。

b       1b

2:

mov x3, #0                                 // unknownprocessor,由于cpu id为零,无法识别处理器

3:

mov x0, x3                                 //把x3中内容存到x0中,当做参数返回。X3存储的是cpu_table的物理地址

ret

ENDPROC(lookup_processor_type)

.align        3

.type        __lookup_processor_type_data,%object

__lookup_processor_type_data:

.quad       .

.quad       cpu_table

.size __lookup_processor_type_data,. - __lookup_processor_type_data

/*

* Determine validity of the x21 FDT pointer.

* The dtb must be 8-byte aligned and live inthe first 512M of memory.

* 判断x21寄存器中的FDT指针是否有效;dtb必须是8字节对齐并且在内存前512M中

*/

__vet_fdt:

tst    x21, #0x7                          //前面提到过x21中存放fdt地址,测试低三位

b.ne 1f

cmp x21, x24                    //对比x21地址与内核镜像起始物理地址PHYS_OFFSET比对,若小于则无效

b.lt   1f

mov x0, #(1 <<29)           //1<<29=512M

add  x0, x0, x24                //对比x21与起始物理地址+512M

cmp x21, x0

b.ge 1f                               //如果大于512M则无效

ret                                       //否则返回

1:

mov x21, #0             //清空x21并返回

ret

ENDPROC(__vet_fdt)

希望大家有问题留言给我,一起讨论共同进步:)

参考网址:http://blog.csdn.net/tommy_wxie/article/details/7238748

ARMv8 Linux内核head.S源码分析的更多相关文章

  1. Linux 内核调度器源码分析 - 初始化

    导语 上篇系列文 混部之殇-论云原生资源隔离技术之CPU隔离(一) 介绍了云原生混部场景中CPU资源隔离核心技术:内核调度器,本系列文章<Linux内核调度器源码分析>将从源码的角度剖析内 ...

  2. 鸿蒙轻内核M核源码分析:LibC实现之Musl LibC

    摘要:本文学习了LiteOS-M内核Musl LibC的实现,特别是文件系统和内存分配释放部分. 本文分享自华为云社区<鸿蒙轻内核M核源码分析系列十九 Musl LibC>,作者:zhus ...

  3. 基于Linux平台的libpcap源码分析和优化

    目录 1..... libpcap简介... 1 2..... libpcap捕包过程... 2 2.1        数据包基本捕包流程... 2 2.2        libpcap捕包过程... ...

  4. 【Linux 内核网络协议栈源码剖析】网络栈主要结构介绍(socket、sock、sk_buff,etc)

    原文:http://blog.csdn.net/wenqian1991/article/details/46700177 通过前面的分析,可以发现,网络协议栈中的数据处理,都是基于各类结构体,所有有关 ...

  5. 如何查看跟踪查看LINUX内核中的源码

    我的博客:www.while0.com 最近看LINUX书籍时,根据书中代码找相应的函数或者结构定义相当吃力,根据网上资料按以下方法查找速度较快. 1.安装ctags 在源代码目录下运行 ctags ...

  6. 5.2【Linux 内核网络协议栈源码剖析】socket 函数剖析 ☆☆☆

    深度剖析网络协议栈中的 socket 函数,可以说是把前面介绍的串联起来,将网络协议栈各层关联起来. 应用层 FTP SMTP HTTP ... 传输层 TCP UDP 网络层 IP ICMP ARP ...

  7. Windows内核遍历驱动模块源码分析

    要获取windows 内核中所有驱动模块信息,调用 系统服务函数 NtQuerySystemInformation,参数SystemInformationClass 传入SystemModuleInf ...

  8. 鸿蒙轻内核源码分析:文件系统FatFS

    摘要:本文为大家介绍FatFS文件系统结构体的结构体和全局变量,并分析FatFS文件操作接口. 本文分享自华为云社区<鸿蒙轻内核M核源码分析系列二一 03 文件系统FatFS>,作者:zh ...

  9. 鸿蒙轻内核源码分析:文件系统LittleFS

    摘要:本文先介绍下LFS文件系统结构体的结构体和全局变量,然后分析下LFS文件操作接口. 本文分享自华为云社区<# 鸿蒙轻内核M核源码分析系列二一 02 文件系统LittleFS>,作者: ...

随机推荐

  1. Week14(12月9日)

    Part I:提问 =========================== 1.ASP.NET MVC围绕事件驱动的页面声明周期而建立,在渲染的页面上可以触发事件. 2.ASP.NET MVC脱离了H ...

  2. Linux的起源、特点和版本号

    前言 最近上陈渝老师的<高级操作系统>,需要在ucore实验平台上完成一个麻雀虽小五脏俱全的OS,本着看过一小半<30天自制操作系统>的自信,以为这不过是小case,怎料被虐得 ...

  3. 蝕刻技術(Etching Technology)

    1. 前言 蚀刻是将材料使用化学反应或物理撞击作用而移除的技术. 蚀刻技术可以分为『湿蚀刻』(wet etching)及『干蚀刻』(dry etching)两类.在湿蚀刻中是使用化学溶液,经由化学反应 ...

  4. 亲测VS2010纯静态编译QT4.8.0,实现VS2010编译调试Qt程序,QtCreator静态发布程序(图文并茂,非常详细)

    下载源代码,注意一定是源码压缩包如qt-everywhere-opensource-src-4.8.0.zip,不是Qt发布的已编译的不同版本的标准库如qt-win-opensource-4.8.0- ...

  5. SSH有端口映射功能(访问本地端口=访问远程端口)

    大部分SSH连接软件都有SSH通道转发功能,就是用这个实现的. 如果Delphi在代码上实现的话,用libSSH 或者 SecureBridge都可以. 代码基本不用帖,思路给大家讲一下吧. SSH有 ...

  6. 商业模式画布及应用 - MBA智库文档

    商业模式画布及应用 - MBA智库文档 商业模式画布及应用

  7. linux grep详解

    Table of Contents 1. grep简介 2. grep正则表达式元字符集(基本集) 3. 用于egrep和 grep -E的元字符扩展集 4. POSIX字符类 5. Grep命令选项 ...

  8. 使用client对象模型回写SharePoint列表

    使用client对象模型回写SharePoint列表 client对象模型是一个有效的方式回写SharePoint列表. 1. 管理员身份打开VS,新建WPF应用程序SPWriteListApp,确保 ...

  9. Apple Watch程序开发30分钟秒懂

    苹果公司Apple Watch智能手表正在备受追捧,迅速掌握Apple Watch的APP架构,环境搭建,及实例开发将会让开发者占尽先机.我赢职场全国首发,30分钟玩转Apple Watch应用开发实 ...

  10. docker学习笔记15:Dockerfile 指令 USER介绍

    USER指令用于指定容器执行程序的用户身份,默认是 root用户. 在docker run 中可以通过 -u 选项来覆盖USER指令的设置. 举例:docker run -i -t -u mysql ...