(Problem 73)Counting fractions in a range
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d 8 in ascending order of size, we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 3 fractions between 1/3 and 1/2.
How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d 12,000?
题目大意:
考虑分数 n/d, 其中n 和 d 是正整数。如果 nd 并且最大公约数 HCF(n,d)=1, 它被称作一个最简真分数。
如果我们将d 8的最简真分数按照大小的升序列出来,我们得到:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
可以看出1/3和1/2之间共有3个分数。
在d 12,000的升序真分数列表中,1/3和1/2之间有多少个分数?
//(Problem 73)Counting fractions in a range
// Completed on Wed, 19 Feb 2014, 16:34
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#define N 12000 int gcd(int a, int b) //求最大公约数函数
{
int r;
while(b) {
r = a % b;
a = b;
b = r;
}
return a;
} void solve()
{
int a, b, i, j, ans;
ans = ;
for(i = ; i <= N; i++) {
a = i / ; b = i / ;
for(j = a + ; j < b + ; j++) {
if(gcd(i, j) == )
ans++;
}
}
printf("%d\n", ans);
} int main()
{
solve();
return ;
}
Answer:
|
7295372 |
(Problem 73)Counting fractions in a range的更多相关文章
- (Problem 72)Counting fractions
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...
- (Problem 33)Digit canceling fractions
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...
- (Problem 35)Circular primes
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...
- (Problem 57)Square root convergents
It is possible to show that the square root of two can be expressed as an infinite continued fractio ...
- (Problem 42)Coded triangle numbers
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...
- (Problem 41)Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- (Problem 70)Totient permutation
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...
- (Problem 74)Digit factorial chains
The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...
- (Problem 46)Goldbach's other conjecture
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...
随机推荐
- QT 信号与槽 QT简单加法器的实现
信号与槽 背景: 面向过程 模块之间低耦合设计(高内聚). 函数调用: 直接调用 回调调用(低耦合) 面向对象 模块之间低耦合设计(高内聚) 对象调用 直接调用 接口调用 QT: 信号与槽解决问题: ...
- Android自定义View和控件之一-定制属于自己的UI
照例,拿来主义.我的学习是基于下面的三篇blog.前两是基本的流程,第三篇里有比较细致的绘制相关的属性.第4篇介绍了如何减少布局层次来提高效率. 1. 教你搞定Android自定义View 2. 教你 ...
- 2014.8.30.ref,out,params,enum,递归
(一)ref 函数形参变量的输入有两种方式:传值,传址.而ref则为传址.eg: static int Add(ref int n) { Console.WriteLine("Add---- ...
- button变成href (即按钮超链效果)
法一: 这种方法适合做单纯的HTML静态页面,因为它只有button的显示效果,但不能真的跳转.貌似是鸡肋,没多大用. 法二: 1.新打开一个页面 2.本页打开 在超链中实现打开新页面用targe ...
- 原生js判断某个元素是否有指定的class名的几种方法
[注意]以下方法只对class只有一个值的情况下操作 ************************************************************* 结构部分: <d ...
- BZOJ 1217: [HNOI2003]消防局的设立( 贪心 )
一个简单的贪心, 我们只要考虑2个消防局设立的距离为5时是最好的, 因为利用最充分. 就dfs一遍, 再对根处理一下就可以了. 这道题应该是SGU某道题的简化版...这道题距离只有2, 树型dp应该也 ...
- Mysql笔记之 -- 开启Mysql慢查询
Mysql慢查询日志_1--如何开启慢查询日志 Windows下开启MySQL慢查询 MySQL在Windows系统中的配置文件一般是是my.ini找到[mysqld]下面加上 log-slow-qu ...
- 3种方式实现可滑动的Tab
1. 第一种,使用 TabHost + ViewPager 实现 该方法会有一个Bug,当设置tabHost.setCurrentTab()为0时,ViewPager不显示(准确的说是加载),只有点击 ...
- The c programming language第一章节所有程序的实现
//打印第一个程序hello, word #include<stdio.h> int main() { printf("hello, world\n"); ; } // ...
- 闪存主控IC的作用
闪存主要是由闪存芯片.主控芯片.晶振.PCB板等部件组成的.其中主控芯片相当于闪存的“灵魂”,它控制着闪存的工作.主控芯片也是处理单元,在里面写入的程序对整个电路做控制.主控IC是把flash跟hos ...