Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called a reduced proper fraction.

If we list the set of reduced proper fractions for d  8 in ascending order of size, we get:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

It can be seen that there are 3 fractions between 1/3 and 1/2.

How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d  12,000?

题目大意:

考虑分数 n/d, 其中n 和 d 是正整数。如果 nd 并且最大公约数 HCF(n,d)=1, 它被称作一个最简真分数。

如果我们将d  8的最简真分数按照大小的升序列出来,我们得到:

1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8

可以看出1/3和1/2之间共有3个分数。

在d  12,000的升序真分数列表中,1/3和1/2之间有多少个分数?

//(Problem 73)Counting fractions in a range
// Completed on Wed, 19 Feb 2014, 16:34
// Language: C11
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h>
#define N 12000 int gcd(int a, int b) //求最大公约数函数
{
int r;
while(b) {
r = a % b;
a = b;
b = r;
}
return a;
} void solve()
{
int a, b, i, j, ans;
ans = ;
for(i = ; i <= N; i++) {
a = i / ; b = i / ;
for(j = a + ; j < b + ; j++) {
if(gcd(i, j) == )
ans++;
}
}
printf("%d\n", ans);
} int main()
{
solve();
return ;
}
Answer:
7295372

(Problem 73)Counting fractions in a range的更多相关文章

  1. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  2. (Problem 33)Digit canceling fractions

    The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplif ...

  3. (Problem 35)Circular primes

    The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, ...

  4. (Problem 57)Square root convergents

    It is possible to show that the square root of two can be expressed as an infinite continued fractio ...

  5. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  6. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  7. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  8. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  9. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

随机推荐

  1. 数据结构中La表的数据合并到Lb表中

    实验描述:La表中的数据为(3,5,8,11)  Lb 表中的数据为(2,6,8,9,11,15,20) 将La表中的数据而不存在Lb表的数据插入到Lb表中,从而实现并集操作. 出现的问题:最后实现的 ...

  2. golang 并发之协程及通道

    一.概述 在golang中,每个并发执行单元称为goroutine,当程序启动时,main函数在一个单独的goroutine中运行,(main goroutine).新的goroutine会用go语句 ...

  3. Java日期计算之Joda-Time

    http://rensanning.iteye.com/blog/1546652 Joda-Time提供了一组Java类包用于处理包括ISO8601标准在内的date和time.可以利用它把JDK D ...

  4. nginx install lua module

    #install luajit #http://luajit.org/download.html .tar.gz cd LuaJIT- make install PREFIX=/home/allen. ...

  5. poj 1321 棋盘问题 递归运算

    棋盘问题 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19935   Accepted: 9933 Description ...

  6. ThinkPHP实现导出

    刚开始做项目的时候,遇到了这个需求.说实话,对于一个才出来实习的菜鸟,而且还是才接触PHP的菜鸟而言,实在是有心杀敌,无力回天啊. 最简单的方法,就是网上找一个插件,然后一个本来就十几兆的项目,又增加 ...

  7. PHP弱类型:WordPress Cookie伪造

    1 PHP弱类型 PHP是弱类型语言,所以变量会因为使用场景的不同自动进行类型转换.PHP中用 == 以及 != 进行相等判断时,会自动进行类型转换,用 === 以及 !== 进行判断时不会自动转换类 ...

  8. WL(Wear leveling)磨损平衡

    前面说过,闪存寿命是以P/E次数来计算的,而WL就是确保闪存内每个块被写入的次数相等的一种机制.若没有这个机制,SSD内的闪存颗粒就无法在同一时间内挂掉,那对用户来说就是灾难.       会出现这种 ...

  9. 2015 8月之后"云计算"学习计划

    1. 自己在家搭建openstack,使用RDO搭建自己的openstack环境,不必源码方式搭建,只要搭建起来就好,越快越好 --以RDO方式,搭建一个all-in-one的主机,只需要租一台虚拟机 ...

  10. centos 修改shm

    Linux下,Oracle 11g的自动内存管理不能指定大于这个/dev/shm的总量内存.否则就会出现如下错误 ORA-00845: MEMORY_TARGET not supported on t ...