大数据学习笔记之Hadoop(一):Hadoop入门
文章目录
- 大数据概论
- Hadoop(入门)
- 一 从Hadoop框架讨论大数据生态
- 1.1 Hadoop是什么
- 1.2 Hadoop发展历史
- 1.3 Hadoop三大发行版本
- 1.4 Hadoop的优势
- 1.5 Hadoop组成
- 1.5.3 MapReduce架构概述
- 1.6 大数据技术生态体系
- 1.7 推荐系统框架图
- 二 Hadoop运行环境搭建
- 三 Hadoop运行模式
- 3.1 本地文件运行Hadoop 案例
- 3.2 伪分布式运行Hadoop 案例
- 3.2.1 HDFS上运行MapReduce 程序
- 3.2.2 YARN上运行MapReduce 程序
- 3.2.3 修改本地临时文件存储目录
- 3.2.4 Hadoop配置文件说明
- 3.2.5 历史服务配置启动查看
- 3.2.6 日志的聚集
- 3.3 完全分布式部署Hadoop(重点)
- 四 Hadoop编译源码
大数据概论
一、大数据概念
大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
1Byte = 8bit 1K = 1024bit 1MB = 1024K 1G = 1024M
1T = 1024G 1P = 1024T 1E = 1024P 1Z = 1024E
1Y = 1024Z 1B = 1024Y 1N = 1024B 1D = 1024N
二、大数据的特点
1)Volume(大量):
截至目前,人类生产的所有印刷材料的数据量是200PB,而历史上全人类总共说过的话的数据量大约是5EB。当前,典型个人计算机硬盘的容量为TB量级,而一些大企业的数据量已经接近EB量级。
2)Velocity(高速):
这是大数据区分于传统数据挖掘的最显著特征。根据IDC的“数字宇宙”的报告,预计到2020年,全球数据使用量将达到35.2ZB。在如此海量的数据面前,处理数据的效率就是企业的生命。
天猫双十一:2016年6分58秒,天猫交易额超过100亿
3)Variety(多样):
这种类型的多样性也让数据被分为结构化数据和非结构化数据。相对于以往便于存储的以数据库/文本为主的结构化数据,非结构化数据越来越多,包括网络日志、音频、视频、图片、地理位置信息等,这些多类型的数据对数据的处理能力提出了更高要求。
订单数据:
网络数据:
4)Value(低价值密度):
价值密度的高低与数据总量的大小成反比。比如,在一天监控视频中,我们只关心宋宋老师晚上在床上健身那一分钟,如何快速对有价值数据“提纯”成为目前大数据背景下待解决的难题。
三、大数据能干啥?
1)O2O:百度大数据+平台通过先进的线上线下打通技术和客流分析能力,助力商家精细化运营,提升销量。
2)零售:探索用户价值,提供个性化服务解决方案;贯穿网络与实体零售,携手创造极致体验。经典案例,子尿布+啤酒。
3)旅游:深度结合百度独有大数据能力与旅游行业需求,共建旅游产业智慧管理、智慧服务和智慧营销的未来。
4)商品广告推荐:给用户推荐访问过的商品广告类型
5) 房产:大数据全面助力房地产行业,打造精准投策与营销,选出更合适的地,建造更合适的楼,卖给更合适的人。
6)保险:海量数据挖掘及风险预测,助力保险行业精准营销,提升精细化定价能力。
7)金融:多维度体现用户特征,帮助金融机构推荐优质客户,防范欺诈风险。
8)移动联通:移动联通:根据用户年龄、职业、消费情况,分析统计哪种套餐适合哪类人群。对市场人群精准定制。
9)人工智能
四、大数据发展前景
1)党的十八届五中全会提出“实施国家大数据战略”,国务院印发《促进大数据发展行动纲要》,大数据技术和应用处于创新突破期,国内市场需求处于爆发期,我国大数据产业面临重要的发展机遇。
2)国际数据公司IDC预测,到2020年,企业基于大数据计算分析平台的支出将突破5000亿美元。目前,我国大数据人才只有46万,未来3到5年人才缺口达150万之多。
人才缺口计算
150w-40w=110w
110W/5年 = 22w/年
22w/12月=1.83w/月
自古不变的真理:先入行者吃肉,后入行者喝汤,最后到的买单!
3)2017年北京大学、中国人民大学、北京邮电大学等25所高校成功申请开设大数据课程。
4)大数据属于高新技术,大牛少,升职竞争小;
5)在北京大数据开发工程师的平均薪水已经到17800元(数据统计来职友集),而且目前还保持强劲的发展势头。
五、企业数据部的业务流程分析
六、企业数据部的一般组织结构
企业数据部的一般组织结构,适用于大中型企业。
Hadoop(入门)
一 从Hadoop框架讨论大数据生态
1.1 Hadoop是什么
1)Hadoop是一个由Apache基金会所开发的分布式系统基础架构
2)主要解决,海量数据的 存储 和海量数据的 分析计算 问题。
3)广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈
1.2 Hadoop发展历史
1)Lucene–Doug Cutting开创的开源软件,用java书写代码,实现与Google类似的全文搜索功能,它提供了全文检索引擎的架构,包括完整的查询引擎和索引引擎
2)2001年年底成为apache基金会的一个子项目
3)对于大数量的场景,Lucene面对与Google同样的困难
4)学习和模仿Google解决这些问题的办法 :微型版Nutch
5)可以说Google是hadoop的思想之源(Google在大数据方面的三篇论文)
GFS —>HDFS
Map-Reduce —>MR
BigTable —>Hbase
6)2003-2004年,Google公开了部分GFS和Mapreduce思想的细节,以此为基础Doug Cutting等人用了2年业余时间实现了DFS和Mapreduce机制,使Nutch性能飙升
7)2005 年Hadoop 作为 Lucene的子项目 Nutch的一部分正式引入Apache基金会。2006 年 3 月份,Map-Reduce和Nutch Distributed File System (NDFS) 分别被纳入称为 Hadoop 的项目中
8)名字来源于Doug Cutting儿子的玩具大象
9)Hadoop就此诞生并迅速发展,标志这云计算时代来临
1.3 Hadoop三大发行版本
Hadoop 三大发行版本: Apache、Cloudera、Hortonworks
Apache版本最原始(最基础)的版本,对于入门学习最好。
Cloudera在大型互联网企业中用的较多。
Hortonworks文档较好。
1)Cloudera Hadoop
(1)2008年成立的Cloudera是最早将Hadoop商用的公司,为合作伙伴提供Hadoop的商用解决方案,主要是包括支持、咨询服务、培训。
(2)2009年Hadoop的创始人Doug Cutting也加盟Cloudera公司。Cloudera产品主要为CDH,Cloudera Manager,Cloudera Support
(3)CDH是Cloudera的Hadoop发行版,完全开源,比Apache Hadoop在兼容性,安全性,稳定性上有所增强。
(4)Cloudera Manager是集群的软件分发及管理监控平台,可以在几个小时内部署好一个Hadoop集群,并对集群的节点及服务进行实时监控。Cloudera Support即是对Hadoop的技术支持。
(5)Cloudera的标价为每年每个节点4000美元。Cloudera开发并贡献了可实时处理大数据的Impala项目。
2)Hortonworks Hadoop
(1)2011年成立的Hortonworks是雅虎与硅谷风投公司Benchmark Capital合资组建。
(2)公司成立之初就吸纳了大约25名至30名专门研究Hadoop的雅虎工程师,上述工程师均在2005年开始协助雅虎开发Hadoop,贡献了Hadoop80%的代码。
(3)雅虎工程副总裁、雅虎Hadoop开发团队负责人Eric Baldeschwieler出任Hortonworks的首席执行官。
(4)Hortonworks的主打产品是Hortonworks Data Platform(HDP),也同样是100%开源的产品,HDP除常见的项目外还包括了Ambari,一款开源的安装和管理系统。
(5)HCatalog,一个元数据管理系统,HCatalog现已集成到Facebook开源的Hive中。Hortonworks的Stinger开创性的极大的优化了Hive项目。Hortonworks为入门提供了一个非常好的,易于使用的沙盒。
(6)Hortonworks开发了很多增强特性并提交至核心主干,这使得Apache Hadoop能够在包括Window Server和Windows Azure在内的microsoft Windows平台上本地运行。定价以集群为基础,每10个节点每年为12500美元。
1.4 Hadoop的优势
1)高可靠性:因为Hadoop假设计算元素和存储会出现故障,因为它维护多个工作数据副本,在出现故障时可以对失败的节点重新分布处理。
2)高扩展性:在集群间分配任务数据,可方便的扩展数以千计的节点。
3) 高效性:在MapReduce的思想下,Hadoop是并行工作的,以加快任务处理速度。
4)高容错性:自动保存多份副本数据,并且能够自动将失败的任务重新分配。
1.5 Hadoop组成
1)Hadoop HDFS:一个高可靠、高吞吐量的分布式文件系统。
2)Hadoop MapReduce:一个分布式的离线并行计算框架。
3)Hadoop YARN:作业调度与集群资源管理的框架。
4)Hadoop Common:支持其他模块的工具模块。
HSFS相当于电脑磁盘
Hadoop MapReduce相当于应用程序
Hadoop YARN相当于电脑系统
1.5.1 HDFS架构概述
1)NameNode(nn):存储文件的元数据,如文件名,文件目录结构,文件属性(生成时间、副本数、文件权限),以及每个文件的块列表和块所在的DataNode等。
2)DataNode(dn):在本地文件系统存储文件块数据,以及块数据的校验和。
3)Secondary NameNode(2nn):用来监控HDFS状态的辅助后台程序,每隔一段时间获取HDFS元数据的快照。辅助NameNode工作
1.5.2 YARN架构概述
1)ResourceManager(rm):处理客户端请求、启动/监控ApplicationMaster、监控NodeManager、资源分配与调度;
2)NodeManager(nm):单个节点上的资源管理、处理来自ResourceManager的命令、处理来自ApplicationMaster的命令;
3)ApplicationMaster:数据切分、为应用程序申请资源,并分配给内部任务、任务监控与容错。
4)Container:对任务运行环境的抽象,封装了CPU、内存等多维资源以及环境变量、启动命令等任务运行相关的信息。
1.5.3 MapReduce架构概述
MapReduce将计算过程分为两个阶段:Map和Reduce
1)Map阶段并行处理输入数据
2)Reduce阶段对Map结果进行汇总
1.6 大数据技术生态体系
图中涉及的技术名词解释如下:
1)Sqoop:sqoop是一款开源的工具,主要用于在Hadoop(Hive)与传统的数据库(mysql)间进行数据的传递,可以将一个关系型数据库(例如 : MySQL ,Oracle 等)中的数据导进到Hadoop的HDFS中,也可以将HDFS的数据导进到关系型数据库中。
2)Flume:Flume是Cloudera提供的一个高可用的,高可靠的,分布式的海量日志采集、聚合和传输的系统,Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接受方(可定制)的能力。
3)Kafka:Kafka是一种高吞吐量的分布式发布订阅消息系统,有如下特性:
(1)通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
(2)高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息
(3)支持通过Kafka服务器和消费机集群来分区消息。
(4)支持Hadoop并行数据加载。
4)Storm:Storm为分布式实时计算提供了一组通用原语,可被用于“流处理”之中,实时处理消息并更新数据库。这是管理队列及工作者集群的另一种方式。 Storm也可被用于“连续计算”(continuous computation),对数据流做连续查询,在计算时就将结果以流的形式输出给用户。
5)Spark:Spark是当前最流行的开源大数据内存计算框架。可以基于Hadoop上存储的大数据进行计算。
6)Oozie:Oozie是一个管理Hdoop作业(job)的工作流程调度管理系统。Oozie协调作业就是通过时间(频率)和有效数据触发当前的Oozie工作流程。
7)Hbase:HBase是一个分布式的、面向列的开源数据库。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。
8)Hive:hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
10)R语言:R是用于统计分析、绘图的语言和操作环境。R是属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计制图的优秀工具。
11)Mahout:
Apache Mahout是个可扩展的机器学习和数据挖掘库,当前Mahout支持主要的4个用例:
推荐挖掘:搜集用户动作并以此给用户推荐可能喜欢的事物。
聚集:收集文件并进行相关文件分组。
分类:从现有的分类文档中学习,寻找文档中的相似特征,并为无标签的文档进行正确的归类。
频繁项集挖掘:将一组项分组,并识别哪些个别项会经常一起出现。
12)ZooKeeper:Zookeeper是Google的Chubby一个开源的实现。它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护、名字服务、 分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
1.7 推荐系统框架图
二 Hadoop运行环境搭建
2.1 虚拟机网络模式设置为NAT
最后,重新启动系统。
[root@hadoop101 ~]# sync
[root@hadoop101 ~]# reboot
2.2 克隆虚拟机
1)克隆虚拟机
2)启动虚拟机
2.3 修改为静态ip
1)在终端命令窗口中输入
[root@hadoop101 /]#vim /etc/udev/rules.d/70-persistent-net.rules
进入如下页面,删除eth0该行;将eth1修改为eth0,同时复制物理ip地址
因为这个是本机的物理网卡
2)修改IP地址
[root@hadoop101 /]#vim /etc/sysconfig/network-scripts/ifcfg-eth0
需要修改的内容有5项:
IPADDR=192.168.1.101
GATEWAY=192.168.1.2
ONBOOT=yes
BOOTPROTO=static
DNS1=192.168.1.2
(1)修改前
(2)修改后
:wq 保存退出
3)执行service network restart
4)如果报错,reboot,重启虚拟机
2.4 修改主机名
1)修改linux的hosts文件
(1)进入Linux系统查看本机的主机名。通过hostname命令查看
[root@hadoop ~]# hostname
hadoop100
(2)如果感觉此主机名不合适,我们可以进行修改。通过编辑/etc/sysconfig/network文件
#vi /etc/sysconfig/network
文件中内容
NETWORKING=yes
NETWORKING_IPV6=no
HOSTNAME= hadoop101
注意:主机名称不要有“_”下划线
(3)打开此文件后,可以看到主机名。修改此主机名为我们想要修改的主机名hadoop101。
(4)保存退出。
(5)打开/etc/hosts
vim /etc/hosts
添加如下内容
192.168.1.100 hadoop100
192.168.1.101 hadoop101
192.168.1.102 hadoop102
192.168.1.103 hadoop103
192.168.1.104 hadoop104
192.168.1.105 hadoop105
192.168.1.106 hadoop106
192.168.1.107 hadoop107
192.168.1.108 hadoop108
192.168.1.109 hadoop109
192.168.1.110 hadoop110
(6)并重启设备,重启后,查看主机名,已经修改成功
2)修改window7的hosts文件
(1)进入C:\Windows\System32\drivers\etc路径
(2)打开hosts文件并添加如下内容
192.168.1.100 hadoop100
192.168.1.101 hadoop101
192.168.1.102 hadoop102
192.168.1.103 hadoop103
192.168.1.104 hadoop104
192.168.1.105 hadoop105
192.168.1.106 hadoop106
192.168.1.107 hadoop107
192.168.1.108 hadoop108
192.168.1.109 hadoop109
192.168.1.110 hadoop110
2.5 关闭防火墙
1)查看防火墙开机启动状态
chkconfig iptables --list
2)关闭防火墙
chkconfig iptables off
2.6 在opt目录下创建文件
1)创建atguigu用户
在root用户里面执行如下操作
2)设置atguigu用户具有root权限
修改 /etc/sudoers 文件,找到下面一行,在root下面添加一行,如下所示:
## Allow root to run any commands anywhere
root ALL=(ALL) ALL
atguigu ALL=(ALL) ALL
修改完毕,现在可以用atguigu帐号登录,然后用命令 su - ,即可获得root权限进行操作。
3)在/opt目录下创建文件夹
(1)在root用户下创建module、software文件夹(如果mkdir的命令不行就sudo mkdir)
mkdir module
mkdir software
(2)修改module、software文件夹的所有者
[root@hadoop101 opt]# chown atguigu module
[root@hadoop101 opt]# chown atguigu software
[root@hadoop101 opt]# ls -al
总用量 24
drwxr-xr-x. 6 root root 4096 4月 24 09:07 .
dr-xr-xr-x. 23 root root 4096 4月 24 08:52 …
drwxr-xr-x. 4 atguigu root 4096 4月 23 16:26 module
drwxr-xr-x. 2 root root 4096 3月 26 2015 rh
drwxr-xr-x. 2 atguigu root 4096 4月 23 16:25 software
2.7 安装jdk
1)卸载现有jdk
(1)查询是否安装java软件:
rpm -qa|grep java
(2)如果安装的版本低于1.7,卸载该jdk:
rpm -e 软件包
2)用filezilla工具将jdk、Hadoop-2.7.2.tar.gz(官方原版的)导入到opt目录下面的software文件夹下面
3)在linux系统下的opt目录中查看软件包是否导入成功。
[root@hadoop101opt]# cd software/
[root@hadoop101software]# ls
jdk-7u79-linux-x64.gz hadoop-2.7.2.tar.gz
4)解压jdk到/opt/module目录下
tar -zxf jdk-7u79-linux-x64.gz -C /opt/module/
5)配置jdk环境变量
(1)先获取jdk路径:
[root@hadoop101 jdk1.7.0_79]# pwd
/opt/module/jdk1.7.0_79
(2)打开/etc/profile文件:
[root@hadoop101 jdk1.7.0_79]# vi /etc/profile
在profie文件末尾添加jdk路径:
##JAVA_HOME
export JAVA_HOME=/opt/module/jdk1.7.0_79
export PATH=PATH:PATH:PATH:JAVA_HOME/bin
(3)保存后退出:
:wq
(4)让修改后的文件生效:
[root@hadoop101 jdk1.7.0_79]# source /etc/profile
(5)重启(如果java –version可以用就不用重启):
[root@hadoop101 jdk1.7.0_79]# sync
[root@hadoop101 jdk1.7.0_79]# reboot
6)测试jdk安装成功
[root@hadoop101 jdk1.7.0_79]# java -version
java version “1.7.0_79”
2.8 安装Hadoop
1)进入到Hadoop安装包路径下:
[root@hadoop101 ~]# cd /opt/software/
2)解压安装文件到/opt/module下面
[root@hadoop101 software]# tar -zxf hadoop-2.7.2.tar.gz -C /opt/module/
3)查看是否解压成功
[root@hadoop101 software]# ls /opt/module/
hadoop-2.7.2
hadoop中的内容:
bin 一些命令
etc 配置文件
include c语言的一些类库
lib libexec 第三方的类库
LIECENSE.txt NOTICE.txt README.txt 描述性文件
sbin 用户命令
share jar包
4)配置hadoop中的hadoop-env.sh
cd /opt/module/hadoop-2.7.2
ll
cd etc/
ll
cd hadoop
ll (发现有hadoop-env.sh)
vi hadoop-env.sh
找到
export JAVA_HOME=$(JAVA_HOME)
修改为
export JAVA_HOME=/opt/module/jdk1.7.0_79(自己的java home)
5)将hadoop添加到环境变量
(1)获取hadoop安装路径:
[root@ hadoop101 hadoop-2.7.2]# pwd
/opt/module/hadoop-2.7.2
(2)打开/etc/profile文件:
root@ hadoop101 hadoop-2.7.2]# vi /etc/profile
在profie文件末尾添加jdk路径:(shitf+g)
##HADOOP_HOME
export HADOOP_HOME=/opt/module/hadoop-2.7.2
export PATH=PATH:PATH:PATH:HADOOP_HOME/bin
export PATH=PATH:PATH:PATH:HADOOP_HOME/sbin
(3)保存后退出:
:wq
(4)让修改后的文件生效:
root@ hadoop101 hadoop-2.7.2]# source /etc/profile
(5)重启(如果hadoop命令不能用再重启):
root@ hadoop101 hadoop-2.7.2]# sync
root@ hadoop101 hadoop-2.7.2]# reboot
三 Hadoop运行模式
1)官方网址
(1)官方网站:
http://hadoop.apache.org/
(2)各个版本归档库地址
https://archive.apache.org/dist/hadoop/common/hadoop-2.7.2/
(3)hadoop2.7.2版本详情介绍
http://hadoop.apache.org/docs/r2.7.2/
2)Hadoop运行模式
(1)本地模式(默认模式):
不需要启用单独进程,直接可以运行,测试和开发时使用。
(2)伪分布式模式:
等同于完全分布式,只有一个节点。
(3)完全分布式模式:
多个节点一起运行。
3.1 本地文件运行Hadoop 案例
3.1.1 官方grep案例
1)创建在hadoop-2.7.2文件下面创建一个input文件夹
[atguigu@hadoop101 hadoop-2.7.2]$mkdir input
2)将hadoop的xml配置文件复制到input
[atguigu@hadoop101 hadoop-2.7.2]$cp etc/hadoop/*.xml input
3)执行share目录下的mapreduce程序
[atguigu@hadoop101 hadoop-2.7.2]$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar grep input output 'dfs[a-z.]+'
如果配置了hadoop环境变量的话可以直接hadoop
input 输入文件夹,是说在这个文件夹下面查找数据,前面已经输入进去了
output查询的结果放到哪个文件中去,output不允许已经存在,否则会报错。也可以起其他的名字,比如out
dfs[a-z.]+ dfs开头[] 表示可选 a-z可选 + 表示还可以有其他的字母
ll
发现多了一个outpput目录,
cd output
ll
发现有如下两个文件
part-r-00000(地址内容)
_SUCCESS(标志性的)
cat part-r-00000
1 dfsadmin
从一堆配置文件中找到了dfsadmin,并且这个单词出现的次数是1
4)查看输出结果
[atguigu@hadoop101 hadoop-2.7.2]$ cat output/*
3.1.2 官方wordcount案例
1)创建在hadoop-2.7.2文件下面创建一个wcinput文件夹
[atguigu@hadoop101 hadoop-2.7.2]$mkdir wcinput
2)在wcinput文件下创建一个wc.input文件
[atguigu@hadoop101 hadoop-2.7.2]$cd wcinput
[atguigu@hadoop101 wcinput]$touch wc.input
3)编辑wc.input文件 输入任意字符都可以
4)回到hadoop目录/opt/module/hadoop-2.7.2
5)执行程序:
[atguigu@hadoop101 hadoop-2.7.2]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount wcinput wcoutput
6)查看结果:
[atguigu@hadoop101 hadoop-2.7.2]$cat wcoutput/part-r-00000
atguigu 2
hadoop 2
mapreduce 1
yarn 1
3.2 伪分布式运行Hadoop 案例
3.2.1 HDFS上运行MapReduce 程序
1)分析:
(1)准备1台客户机
(2)安装jdk
(3)配置环境变量
(4)安装hadoop
(5)配置环境变量
(6)配置集群
(7)启动、测试集群增、删、查
(8)在HDFS上执行wordcount案例
服务器最小系统
2.1 虚拟机网络模式设置为NAT
2.2 克隆虚拟机
2.3 修改为静态ip (1)[root@hadoop101 /]#vim /etc/udev/rules.d/70-persistent-net.rules 删除eth0,升级eth1为eth0;
复制物理ip地址。 (2)[root@hadoop101 /]#vim
/etc/sysconfig/network-scripts/ifcfg-eth0 粘贴复制的物理ip地址
IPADDR=192.168.1.101
2.4修改主机名 (1)#vi /etc/sysconfig/network 修改主机名称 (2)vim /etc/hosts
192.168.1.100 hadoop100
192.168.1.101 hadoop101
192.168.1.102 hadoop102 -------------------------------------- 重启: sync reboot
2.5 关闭防火墙 chkconfig iptables --list
2)执行步骤
需要配置hadoop文件如下
(1)配置集群
(a)配置:hadoop-env.sh
Linux系统中获取jdk的安装路径:
[root@ hadoop101 ~]# echo $JAVA_HOME
/opt/module/jdk1.7.0_79
修改JAVA_HOME 路径:
(b)配置:core-site.xml
<!--指定HDFS中NameNode的地址-->
<property>
<name>fs.defaultFS</name>
<value>hdfs://hadoop101:8020</value>
//hdfs:// hdfs协议,类似http://
</property>
<!--指定hadoop运行时产生文件的存储目录-->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-2.7.2/data/tmp</value>
</property>
通过查看apache官网发现,fs.defaultFS默认值是file:/// 也就是本地文件,这也就是为什么在本地模式下不需要任何配置直接能运行,而这里我们是用集群的hdfs的方式来控制。
(c)配置:hdfs-site.xml
<!--指定HDFS副本的数量-->
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
默认值是3
(2)启动集群
(a)格式化namenode(第一次启动时格式化,以后就不要总格式化)
cd hadoop-2.7.2/bin (101机器,因为是伪集群,也就是本机)
ll (发现有一个hdfs吗,专门用来处理hdfs相关的)
cd hadoop-2.7.2
bin/hdfs namenode -format
(b)启动namenode
cd cd hadoop-2.7.2
sbin/hadoop-daemon.sh start namenode
(c)启动datanode
sbin/hadoop-daemon.sh start datanode
(3)查看集群
(a)查看是否启动成功
[root@hadoop101 ~]# jps
13586 NameNode
13668 DataNode
13786 Jps
(b)查看产生的log日志
当前目录:/opt/module/hadoop-2.7.2/logs
[root@hadoop101 logs]# ls
hadoop-root-datanode-hadoop.atguigu.com.log
hadoop-root-datanode-hadoop.atguigu.com.out
hadoop-root-namenode-hadoop.atguigu.com.log
hadoop-root-namenode-hadoop.atguigu.com.out
SecurityAuth-root.audit
[root@hadoop101 logs]# cat hadoop-root-datanode-hadoop.atguigu.com.log
(c)web端查看HDFS文件系统
输入 http://192.168.1.101:50070/
这个端口号,是hadoop框架提供的访问端口
http://192.168.1.101:50070/dfshealth.html#tab-overview
注意:如果不能查看,看如下帖子处理
http://www.cnblogs.com/zlslch/p/6604189.html
startd 创建时间
version 版本号
conpiled 完成时间
cluster id 集群id号
block Pool id 模块的版本号
node 显示的节点 可以看到还是本机101
hdfs具体存放数据的路径,这个页面只能查看,要想创建需要通过linu
(4)操作集群
(a)在hdfs文件系统上创建一个input文件夹
[atguigu@hadoop101 hadoop-2.7.2]$ bin/hdfs dfs -mkdir -p /user/atguigu/mapreduce/wordcount/input
注意:bin/hdfs dfs等价于hadoop fs
完了之后在这个页面上就会出现相应的目录
-R是递归、-ls 类似linux ls ,查看根目录下的fs -lsr和-ls -R是等价的
(b)将测试文件内容上传到文件系统上
bin/hdfs dfs -put wcinput/wc.input /user/atguigu/mapreduce/wordcount/input/
是hadoop-2.7.2目录下上面的例子中创建的文件,这里可以上传其他的文件,这里只是举例wcinput/wc.input
但是这个页面只允许查看不允许修改
(c)查看上传的文件是否正确
bin/hdfs dfs -ls /user/atguigu/mapreduce/wordcount/input/
bin/hdfs dfs -cat /user/atguigu/mapreduce/wordcount/input/wc.input
(d)在Hdfs上运行mapreduce程序
bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /user/atguigu/mapreduce/wordcount/input/ /user/atguigu/mapreduce/wordcount/output
wordcount 是wordcount案例,于上面的官方案例的区别是吧input和output 的路径换成了hdfs的路径
(e)查看输出结果
命令行查看:
bin/hdfs dfs -cat /user/atguigu/mapreduce/wordcount/output/*
浏览器查看
(f)将测试文件内容下载到本地
hadoop fs -get /user/atguigu/mapreduce/wordcount/output/part-r-00000 ./wcoutput/
(g)删除输出结果
hdfs dfs -rmr /user/atguigu/mapreduce/wordcount/output
-rmr 递归删除
为什么要删除output目录?
因为在再次运行的时候就运行不了了
这里注意,集群不能正常启动的问题:
第一次启动没问题,第二次启动时,会有文件残留,bin/hdfs namenode -formate 会产生一个新的namenode文件(id),就不认识一点的datanode了,导致进群不能正常启动。
解决办法:在格式化之前,删除datanode里面的信息(默认在/tmp,如果配置该目录,那就要去你配置的目录下删除(hadoop-2.7.2/data/tmp))
3.2.2 YARN上运行MapReduce 程序
1)分析:
(1)准备1台客户机
(2)安装jdk
(3)配置环境变量
(4)安装hadoop
(5)配置环境变量
(6)配置集群yarn上运行
(7)启动、测试集群增、删、查
(8)在yarn上执行wordcount案例
2)执行步骤
(1)配置集群
(a)配置yarn-env.sh
配置一下JAVA_HOME
记住env.sh只需要配置JAVA_HOME
(b)配置yarn-site.xml
<!--reducer获取数据的方式-->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
//mapreduce_shuffle获取数据的方式
</property>
<!--指定YARN的ResourceManager的地址-->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>hadoop101</value>
</property>
cd /opt/module/hadoop-2.7.2/etc/hadoop
vi yarn-site.xml
(c)配置:mapred-env.sh
配置一下JAVA_HOME (同上)
(d)配置: (对mapred-site.xml.template重新命名为) mapred-site.xml
cd /opt/module/hadoop-2.7.2/etc/hadoop
ll
mv mapred-site.xml.template mapred-site.xml
<!--指定mr运行的yarn上-->
<property>
<name>mapreduce.fremework.name</name>
<value>yarn</value>
</property>
(2)启动集群
启动之前先开启namenode和datanode
sbin/hadoop-daemon.sh start namenode
sbin/hadoop-daemon.sh start datanode
(a)启动resourcemanager
sbin/yarn-daemon.sh start resourcemanager (hadoop-2.7.2/sbin目录)
(b)启动nodemanager
sbin/yarn-daemon.sh start nodemanager
(3)集群操作
(a)yarn的浏览器页面查看
http://192.168.1.101:8088/cluster
(b)删除文件系统上的output文件
bin/hdfs dfs -rm -R /user/atguigu/mapreduce/wordcount/output
(c)执行mapreduce程序
bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar wordcount /user/atguigu/mapreduce/wordcount/input /user/atguigu/mapreduce/wordcount/output
可以看到map全部执行完毕,之后才开始执行reduce
(d)查看运行结果
bin/hdfs dfs -cat /user/atguigu/mapreduce/wordcount/output/*
3.2.3 修改本地临时文件存储目录
1)停止进程
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/yarn-daemon.sh stop nodemanager
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/yarn-daemon.sh stop resourcemanager
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh stop datanode
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh stop namenode
关闭之后尝试启动
发现启动不了
因为这里的tmp没有删除,这里的目录是默认值在下面有讲
rm -rf hadoop-atguigu
rm -rf hadoop-atguigu-namenode.pid
cd …/(hadoop-2.2.7)
rm -rf logs (里面保存着上一个集群的日志)
2)修改hadoop.tmp.dir
mkdir -p data/tmp 也可以不创建,因为下面指定了
[core-site.xml]
cd hadoop-2.7.2/rtc/hadoop
vi core-site.xml
<!---->
<property>
<name>hadoop.tmp.dir</name>
<value>/opt/module/hadoop-2.7.2/data/tmp</value>
</property>
默认值
3)格式化NameNode
[atguigu@hadoop101 hadoop-2.7.2]$ hadoop namenode -format
4)启动所有进程
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start namenode
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/hadoop-daemon.sh start datanode
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/yarn-daemon.sh start resourcemanager
[atguigu@hadoop101 hadoop-2.7.2]$ sbin/yarn-daemon.sh start nodemanager
5)查看/opt/module/hadoop-2.7.2/data/tmp这个目录下的内容。
3.2.4 Hadoop配置文件说明
Hadoop配置文件分两类:默认配置文件和自定义配置文件,只有用户想修改某一默认配置值时,才需要修改自定义配置文件,更改相应属性值。
(1)默认配置文件:存放在hadoop相应的jar包中
找到从官网上下载的hadoop包,解压
cd hadoop-2.7.2/share/hadoop/hdfs(mapreduce、yarn)
[core-default.xml]
hadoop-common-2.7.2.jar/ core-default.xml
[hdfs-default.xml]
hadoop-hdfs-2.7.2.jar/ hdfs-default.xml
[yarn-default.xml]
hadoop-yarn-common-2.7.2.jar/ yarn-default.xml
[core-default.xml]
hadoop-mapreduce-client-core-2.7.2.jar/ core-default.xml
(2)自定义配置文件:存放在$HADOOP_HOME/etc/hadoop
core-site.xml
hdfs-site.xml
yarn-site.xml
mapred-site.xml
3.2.5 历史服务配置启动查看
1)配置mapred-site.xml
2)查看启动历史服务器文件目录:
[root@hadoop101 hadoop-2.7.2]# ls sbin/ |grep mr
mr-jobhistory-daemon.sh
3)启动历史服务器
sbin/mr-jobhistory-daemon.sh start historyserver
4)查看历史服务器是否启动
jps
5)查看jobhistory
http://192.168.1.101:19888/jobhistory
3.2.6 日志的聚集
日志聚集概念:应用运行完成以后,将日志信息上传到HDFS系统上
开启日志聚集功能步骤:
(1)配置yarn-site.xml
(2)关闭nodemanager 、resourcemanager和historymanager
sbin/yarn-daemon.sh stop resourcemanager
sbin/yarn-daemon.sh stop nodemanager
sbin/mr-jobhistory-daemon.sh stop historyserver
(3)启动nodemanager 、resourcemanager和historymanager
sbin/yarn-daemon.sh start resourcemanager
sbin/yarn-daemon.sh start nodemanager
sbin/mr-jobhistory-daemon.sh start historyserver
(4)删除hdfs上已经存在的hdfs文件
bin/hdfs dfs -rm -R /user/atguigu/mapreduce/wordcount/output
(5)执行wordcount程序
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.0.jar wordcount /user/atguigu/mapreduce/wordcount/input /user/atguigu/mapreduce/wordcount/output
(6)查看日志
http://192.168.1.101:19888/jobhistory
3.3 完全分布式部署Hadoop(重点)
分析:
1)准备3台客户机( 关闭防火墙、静态ip、主机名称 )
2)安装jdk
3)配置环境变量
4)安装hadoop
5)配置环境变量
6)安装ssh
7)配置集群
8)启动测试集群
3.3.1 虚拟机准备
详见2.2-2.3章。
简单概括:
先准备一个什么都没有的虚拟机,
主机ip 主机名 防火墙全部关闭
然后克隆两台
修改ip hostname hosts 等
之后重启
3.3.2 主机名设置
详见2.4章。
3.3.3 scp
1)scp可以实现服务器与服务器之间的数据拷贝。
2)案例实操
(1)将hadoop101中/opt/module和/opt/software文件拷贝到hadoop102、hadoop103和hadoop104上。
[root@hadoop101 /]# scp -r /opt/module/ root@hadoop102:/opt
[root@hadoop101 /]# scp -r /opt/software/ root@hadoop102:/opt
[root@hadoop101 /]# scp -r /opt/module/ root@hadoop103:/opt
[root@hadoop101 /]# scp -r /opt/software/ root@hadoop103:/opt
[root@hadoop101 /]# scp -r /opt/module/ root@hadoop104:/opt
[root@hadoop101 /]# scp -r /opt/software/ root@hadoop105:/opt
(2)将192.168.1.102服务器上的文件拷贝到当前用户下。
[root@hadoop101 opt]# scp root@hadoop102:/etc/profile /opt/tmp/
(3)实现两台远程机器之间的文件传输(hadoop103主机文件拷贝到hadoop104主机上)
[atguigu@hadoop102 test]$ scp atguigu@hadoop103:/opt/test/haha atguigu@hadoop104:/opt/test/
3.3.4 SSH无密码登录
1)配置ssh
(1)基本语法
ssh 另一台电脑的ip地址
(2)ssh连接时出现Host key verification failed的解决方法
[root@hadoop2 opt]# ssh 192.168.1.103
The authenticity of host ‘192.168.1.103 (192.168.1.103)’ can’t be established.
RSA key fingerprint is cf:1e
大数据学习笔记之Hadoop(一):Hadoop入门的更多相关文章
- 大数据学习笔记1-大数据处理架构Hadoop
Hadoop:一个开源的.可运行于大规模集群上的分布式计算平台.实现了MapReduce计算模型和分布式文件系统HDFS等功能,方便用户轻松编写分布式并行程序. Hadoop生态系统: HDFS:Ha ...
- 大数据学习(一) | 初识 Hadoop
作者: seriouszyx 首发地址:https://seriouszyx.top/ 代码均可在 Github 上找到(求Star) 最近想要了解一些前沿技术,不能一门心思眼中只有 web,因为我目 ...
- 大数据学习笔记——Hadoop编程实战之HDFS
HDFS基本API的应用(包含IDEA的基本设置) 在上一篇博客中,本人详细地整理了如何从0搭建一个HA模式下的分布式Hadoop平台,那么,在上一篇的基础上,我们终于可以进行编程实操了,同样,在编程 ...
- 大数据学习笔记——Java篇之集合框架(ArrayList)
Java集合框架学习笔记 1. Java集合框架中各接口或子类的继承以及实现关系图: 2. 数组和集合类的区别整理: 数组: 1. 长度是固定的 2. 既可以存放基本数据类型又可以存放引用数据类型 3 ...
- 大数据学习笔记——Linux完整部署篇(实操部分)
Linux环境搭建完整操作流程(包含mysql的安装步骤) 从现在开始,就正式进入到大数据学习的前置工作了,即Linux的学习以及安装,作为运行大数据框架的基础环境,Linux操作系统的重要性自然不言 ...
- 大数据学习笔记之初识Hadoop
1.Hadoop概述 1.1 Hadoop名字的由来 Hadoop项目作者的孩子给一个棕黄色的大象样子的填充玩具的命名 Hadoop的官网:http://hadoop.apache.org . 1.2 ...
- 大数据学习笔记——Hadoop编程实战之Mapreduce
Hadoop编程实战——Mapreduce基本功能实现 此篇博客承接上一篇总结的HDFS编程实战,将会详细地对mapreduce的各种数据分析功能进行一个整理,由于实际工作中并不会过多地涉及原理,因此 ...
- 大数据学习笔记——Hadoop高可用完全分布式模式完整部署教程(包含zookeeper)
高可用模式下的Hadoop集群搭建 本篇博客将会在之前写过的Linux的完整部署的基础上进行,暂时不会涉及到伪分布式或者完全分布式模式搭建,由于HA模式涉及到的配置文件较多,维护起来也较为复杂,相信学 ...
- 大数据学习笔记——Java篇之IO
IO学习笔记整理 1. File类 1.1 File对象的三种创建方式: File对象是一个抽象的概念,只有被创建出来之后,文件或文件夹才会真正存在 注意:File对象想要创建成功,它的目录必须存在! ...
随机推荐
- 关于之前提到的python开发restful风格的接口
此处不做详细说明. https://gitee.com/alin2017/my-i-demo.git 附上git地址,有兴趣的可以去clone一下. 里面针对代码都有相应的注释, 对于每一个文件也有r ...
- play framework 在idea简单运行配置(mac为例)
文章目录 play 最基本的构建 在idea中配置 配置jdk相关 配置play 运行 运行 play 最基本的构建 https://blog.csdn.net/dataiyangu/article/ ...
- 【翻译】Knowledge-Aware Natural Language Understanding(摘要及目录)
翻译Pradeep Dasigi的一篇长文 Knowledge-Aware Natural Language Understanding 基于知识感知的自然语言理解 摘要 Natural Langua ...
- scrapy爬虫值Items
Items有哪些知识? 1.声明 import scrapy class Product(scrapy.Item): name = scrapy.Field() price = scrapy.Fiel ...
- VS2013编译程序出现error C4996: 'std::_Fill_n': Function call with parameters that may be unsafe
最近按照BiliBil网站Visual C++网络项目实战视频教程,使用VS2013编写一个基于MFC的对话框程序HttpSourceViewer,采用了WinHttp库.Boost xpressiv ...
- *arg,**kwargs的参数作用的疑惑
先来看个例子: def foo(*args, **kwargs): print 'args = ', args print 'kwargs = ', kwargs print '----------- ...
- Dijkstra的优先队列
模板 #include<iostream> #include<cstring> #include<algorithm> #include<cmath> ...
- 43.Word Break(看字符串是否由词典中的单词组成)
Level: Medium 题目描述: Given a non-empty string s and a dictionary wordDict containing a list of non- ...
- Ansible--06 ansible roles
Ansible roles roles不管是Ansible还是saltstack,我在写一键部署的时候,都不可能把所有的步骤全部写入到一个'剧本'文件当中,我们肯定需要把不同的工作模块,拆分开来,解耦 ...
- JavaScript值传递和引用传递
1、数据类型:boolean,null,undefined,String,Number,指向包含的数据,进行“值传递”: 2.非数据类型:Array,Function,Object,指向了一个内存地址 ...