数字计数

题目传送门

解题思路

用\(dp[i][j][k]\)来表示长度为\(i\)且以\(j\)为开头的数里\(k\)出现的次数。

则转移方程式为:\(dp[i][j][k] += \sum_{t=0}^{9} dp[i - 1][t][k]\),即在每个数前面放一个\(j\),但是对于放在前面的这个\(j\)我们还没有计算进去,所以有:\(dp[i][j][j] += 10^{i-1}\)。注意此时计算的是有前导0的。

接下来见代码(其实是不知道怎么描述)。

代码如下

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll; inline ll fpow(ll x, ll p){
ll ans = 1;
for(; p; p >>= 1, x = 1LL * x * x)if(p & 1)ans = 1LL * x * ans;
return ans;
} ll dp[20][15][15]; void work(ll x, ll ans[])
{
ll num[15];
ll t = x;
int cnt = 0;
while(t){ //把每一位拆出来
num[++cnt] = t % 10;
t /= 10;
}
for(int i = 1; i < cnt; i ++) //小于cnt的位数全加上
for(int j = 1; j <= 9; j ++)
for(int k = 0; k <= 9; k ++)
ans[k] += dp[i][j][k];
for(int j = 1; j < num[cnt]; j ++) //相同位数小于最高位的全加上
for(int k = 0; k <= 9; k ++)
ans[k] += dp[cnt][j][k];
for(int i = cnt - 1; i >= 1; i --){ //遍历每一位
for(int j = 0; j < num[i]; j ++) //小于这位上数字的全加上
for(int k = 0; k <= 9; k ++)
ans[k] += dp[i][j][k];
for(int u = cnt; u > i; u --) //前面这几位都相等,出现了相同的次数
ans[num[u]] += num[i] * fpow(10LL, i - 1);
}
} int main()
{
ll a, b;
scanf("%lld%lld", &a, &b);
for(int i = 1; i <= 12; i ++){
for(int j = 0; j <= 9; j ++){
for(int k = 0; k <= 9; k ++)
for(int t = 0; t <= 9; t ++)
dp[i][j][k] += dp[i - 1][t][k];
dp[i][j][j] += fpow(10LL, i - 1);
}
}
ll ans1[15] = {0};
ll ans2[15] = {0};
work(b + 1, ans1);
work(a, ans2);
for(int i = 0; i <= 9; i ++)
printf("%lld ", ans1[i] - ans2[i]);
return 0;
}

洛谷P2602 [ZJOI2010]数字计数(数位dp)的更多相关文章

  1. 洛谷P2602 [ZJOI2010]数字计数 题解 数位DP

    题目链接:https://www.luogu.com.cn/problem/P2602 题目大意: 计算区间 \([L,R]\) 范围内 \(0 \sim 9\) 各出现了多少次? 解题思路: 使用 ...

  2. 洛谷 P2602 [ZJOI2010]数字计数

    洛谷 第一次找规律A了一道紫题,写篇博客纪念一下. 这题很明显是数位dp,但是身为蒟蒻我不会呀,于是就像分块打表水过去. 数据范围是\(10^{12}\),我就\(10^6\)一百万一百万的打表. 于 ...

  3. [洛谷P2602][ZJOI2010]数字计数

    题目大意:求区间$[l,r]$中数字$0\sim9$出现个数 题解:数位$DP$ 卡点:无 C++ Code: #include <cstdio> #include <iostrea ...

  4. Luogu P2602 [ZJOI2010]数字计数 数位DP

    很久以前就...但是一直咕咕咕 思路:数位$DP$ 提交:1次 题解:见代码 #include<cstdio> #include<iostream> #include<c ...

  5. 洛谷P2602 [ZJOI2010]数字计数 题解

    题目描述 输入格式 输出格式 输入输出样例 输入样例 1 99 输出样例 9 20 20 20 20 20 20 20 20 20 说明/提示 数据规模与约定 分析 很裸的一道数位DP的板子 定义f[ ...

  6. 洛谷P2602 [ZJOI2010] 数字计数 (数位DP)

    白嫖的一道省选题...... 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 usin ...

  7. UVA.1640.The Counting Problem / BZOJ.1833.[ZJOI2010]数字计数(数位DP)

    题目链接 \(Description\) 求\([l,r]\)中\(0,1,\cdots,9\)每个数字出现的次数(十进制表示). \(Solution\) 对每位分别DP.注意考虑前导0: 在最后统 ...

  8. BZOJ1833或洛谷2602 [ZJOI2010]数字计数

    BZOJ原题链接 洛谷原题链接 又是套记搜模板的时候.. 对\(0\sim 9\)单独统计. 定义\(f[pos][sum]\),即枚举到第\(pos\)位,前面枚举的所有位上是当前要统计的数的个数之 ...

  9. 【洛谷P2602】数字计数

    题目大意:求 [a,b] 中 0-9 分别出现了多少次. 题解:看数据范围应该是一个数位dp. 在 dfs 框架中维护当前的位置和到当前位置一共出现了多少个 \(x,x\in [0,9]\).因此,用 ...

随机推荐

  1. think PHP提取字符串中的数字,并到数据库中使用in查询所关联表的字段值

    /* * 提取数字并去数据库取得相应的分类名 * $strs 需要处理的字符串 * $table 数据表名 * $condition 条件字段 * $field 获取的字段 */ public fun ...

  2. jmeter工作原理介绍,以及常见错误

    JMeter结果树响应数据中文乱码解决办法 打开jmeter配置文件搜索encoding修改编码格式改为utf-8 Jmeter服务器反馈登陆不成功问题 导入到JMeter后,执行场景,发现登录校验成 ...

  3. C++中的临时对象

    1,临时对象神秘在于不知不觉就请入程序当中,并且给程序带来了一定的问题: 2,下面的程序输出什么?为什么? #include <stdio.h> class Test { int mi; ...

  4. [Fw]初探linux中断系统(1)

    1. 重要接口 LDD上说,“内核维护了一个中断信号线的注册表,该注册表类似于I/O端口的注册表.模块在使用中断前要先请求一个中断通道(或者中断请求IRQ),然后在使用后释放该通道.” 撇开系统如何遍 ...

  5. zoj 3777 Problem Arrangement(壮压+背包)

    Problem Arrangement Time Limit: 2 Seconds      Memory Limit: 65536 KB The 11th Zhejiang Provincial C ...

  6. Java接口自动化测试实战笔记

    综述 代码管理工具Git 测试框架 TestNG 测试报告 Mock 接口框架 HTTP 协议接口 测试框架 HttpClient SprintBoot 自动化测试开发 数据持久层框架 MyBatis ...

  7. js中的相等与逗号运算符用法

    /** * 相等运算符 '==',相等则返回true,不等则返回false * - 用 '==' 来比较两个值时,若值的类型不同,则会自动进行类型 * 转换,将其转换为相同的类型然后再进行比较. */ ...

  8. Linux Shell脚本在service模式下的环境变量

    普通Shell脚本在终端下运行时,环境变量来自于init/profile/.bash_profile等,就是在当前终端下可以得到的环境,比如PATH.在service模式下,脚本运行在受限的环境中:比 ...

  9. go语言从例子开始之Example12.func函数

    函数 是 Go 的中心.我们将通过一些不同的例子来进行学习. Example: package main import "fmt" //定义一个函数使用关键字func //函数名名 ...

  10. Codeforces 1195E OpenStreetMap 单调队列套单调队列

    题意:给你一个n * m的矩阵,问所有的a * b的子矩阵的最小的元素的和是多少.题目给出了矩阵中的数的数据生成器. 思路:如果这个问题是1维的,即求所有区间的最小元素的和,用单调队列O(n)就可以做 ...