Logistic回归基础篇之梯度上升算法
代码示例:
import numpy as np
import matplotlib.pyplot as plt def loadDataSet():
dataMat = [];labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0,float(lineArr[0]),float(lineArr[1])])
labelMat.append(int(lineArr[2]))
fr.close()
return dataMat,labelMat def sigmoid(intX):
return 1.0/(1+np.exp(-intX)) def gradAscent(dataMatIn,classLabels):
dataMatrix = np.mat(dataMatIn)
labelMat = np.mat(classLabels).transpose()
m,n = np.shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = np.ones((n,1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights)
error = labelMat - h
weights += alpha * dataMatrix.transpose() * error
return weights def plotBestFit(weights):
dataMat,labelMat = loadDataSet()
dataArr = np.array(dataMat)
n = np.shape(dataArr)[0]
xcord1 = [];ycord1 = []
xcord2 = [];ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i,1]);ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]);ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1,ycord1,s=30,c='red',marker='s')
ax.scatter(xcord2,ycord2,s=30,c='green')
x = np.arange(-3.0,3.0,0.1)
y = (-weights[0] - weights[1]*x)/weights[2]
ax.plot(x,y)
plt.xlabel('X1');plt.ylabel('X2')
plt.show() if __name__ == '__main__':
dataMat,labelMat = loadDataSet()
weights = gradAscent(dataMat,labelMat)
plotBestFit(weights)
运行结果:
参考博客:https://cuijiahua.com/blog/2017/11/ml_6_logistic_1.html
Logistic回归基础篇之梯度上升算法的更多相关文章
- Logistic回归实战篇之预测病马死亡率
利用sklearn.linear_model.LogisticRegression训练和测试算法. 示例代码: import numpy as np import matplotlib.pyplot ...
- 神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...
- 吴裕雄--天生自然python机器学习:使用Logistic回归从疝气病症预测病马的死亡率
,除了部分指标主观和难以测量外,该数据还存在一个问题,数据集中有 30%的值是缺失的.下面将首先介绍如何处理数据集中的数据缺失问题,然 后 再 利 用 Logistic回 归 和随机梯度上升算法来预测 ...
- Logistic回归与梯度上升算法
原创作品出处 原始出处 .作者信息和本声明.否则将追究法律责任.http://sbp810050504.blog.51cto.com/2799422/1608064 Logistic回归与梯度上升算法 ...
- 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型
本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...
- Logistic回归,梯度上升算法理论详解和实现
经过对Logistic回归理论的学习,推导出取对数后的似然函数为 现在我们的目的是求一个向量,使得最大.其中 对这个似然函数求偏导后得到 根据梯度上升算法有 进一步得到 我们可以初始化向量为0,或者随 ...
- 第七篇:Logistic回归分类算法原理分析与代码实现
前言 本文将介绍机器学习分类算法中的Logistic回归分类算法并给出伪代码,Python代码实现. (说明:从本文开始,将接触到最优化算法相关的学习.旨在将这些最优化的算法用于训练出一个非线性的函数 ...
- Logistic回归算法梯度公式的推导
最近学习Logistic回归算法,在网上看了许多博文,笔者觉得这篇文章http://blog.kamidox.com/logistic-regression.html写得最好.但其中有个关键问题没有讲 ...
- 回归——线性回归,Logistic回归,范数,最大似然,梯度,最小二乘……
写在前面:在本篇博客中,旨在对线性回归从新的角度考虑,然后引入解决线性回归中会用到的最大似然近似(Maximum Likelihood Appropriation-MLA) 求解模型中的参数,以及梯度 ...
随机推荐
- CSS选择器的权重与优先规
我们把特殊性分为4个等级,每个等级代表一类选择器,每个等级的值为其所代表的选择器的个数乘以这一等级的权值,最后把所有等级的值相加得出选择器的特殊值. 4个等级的定义如下: 第一等:代表内联样式,如: ...
- hdu 5280 贪心 O(n)算法
题意给你一个序列A[1...N],你必须修改一个A[i]为P,使得修改后的序列A的连续最大和最大 其中N<=1000 分析,N非常小,N^2暴力随便做,不细讲 说一个O(N)的算法 我们知道O( ...
- 【JZOJ5428】【NOIP2017提高A组集训10.27】查询
题目 给出一个长度为n的序列a[] 给出q组询问,每组询问形如\(<x,y>\),求a序列的所有区间中,数字x的出现次数与数字y的出现次数相同的区间有多少个. 分析 我们可以维护一个前缀和 ...
- python-加密算法
#!/usr/bin/python3 # coding:utf-8 # Auther:AlphaPanda # Description: 使用hashlib模块的md5和sha系列加密算法对字符串进行 ...
- [深度学习] pytorch学习笔记(3)(visdom可视化、正则化、动量、学习率衰减、BN)
一.visdom可视化工具 安装:pip install visdom 启动:命令行直接运行visdom 打开WEB:在浏览器使用http://localhost:8097打开visdom界面 二.使 ...
- poj 1017 装箱子(模拟+贪心)
Description A factory produces products packed in square packets of the same height h and of the siz ...
- 使用svn在github上下载文件夹
今天想在github上下载mybatis-generator的eclipse插件,可是如何在github上下载一个文件夹而不用把这个项目clone呢,搜了一下,发现可以直接用svn来下载 只需将将路径 ...
- Hadoop之集群搭建
准备 需要准备多台主机(已经安装并且配置好hadoop和jdk) 需要配置ssh免密服务 下面我们开始进行配置,拿到已经准备好的主机,主机名分别为: centos101 centos102 cento ...
- spark streaming 3: Receiver 到 submitJobSet
对于spark streaming来说,receiver是数据的源头.spark streaming的框架上,将receiver替换spark-core的以磁盘为数据源的做法,但是数据源(如监听某个 ...
- 对《疯狂Spring Cloud微服务架构实战》作者的疑问
Cloud的程序都是用的内部Tomcat,即使把一个大App分成独立小块,能应付得了你们当年人力运维的大量请求涌入吗? 真不知道淘宝怎么做到的双11一直不垮?真实互联网生产环境是充斥图书市场中的所谓S ...