机器学习技法笔记:Homework #7 Decision Tree&Random Forest相关习题
原文地址:https://www.jianshu.com/p/7ff6fd6fc99f
问题描述
程序实现
13-15
# coding:utf-8
# decision_tree.py
import numpy as np
def ReadData(dataFile):
with open(dataFile, 'r') as f:
lines = f.readlines()
data_list = []
for line in lines:
line = line.strip().split()
data_list.append([float(l) for l in line])
dataArray = np.array(data_list)
return dataArray
def sign(n):
if(n>=0):
return 1
else:
return -1
def GetSortedArray(dataArray,i):
# 根据dataArray第i列的值对dataArray进行从小到大的排序
data_list=dataArray.tolist()
sorted_data_list=sorted(data_list,key=lambda x:x[i],reverse=False)
sortedDataArray=np.array(sorted_data_list)
return sortedDataArray
def GetSplitData(pred,dataArray):
assert pred.shape[0]==dataArray.shape[0],"wrong shape of prediction!"
falseData=[]
trueData=[]
for n in range(pred.shape[0]):
if pred[n]==-1:
falseData.append(dataArray[n,:])
elif pred[n]==1:
trueData.append(dataArray[n,:])
else:
print("wrong prediction!")
return np.array(falseData),np.array(trueData)
def GetWeightedImpurity(pred,dataY):
num_data = dataY.shape[0]
num_false=(pred==-1).sum()
num_true=(pred==1).sum()
assert num_false+num_true==num_data,"wrong prediction!"
if(num_false==0):
falseGini=0
else:
falseFalse = ((pred + dataY) == -2).sum()
falseTrue = num_false - falseFalse
falseGini=1 - (falseFalse ** 2 + falseTrue ** 2) / num_false ** 2
if(num_true==0):
trueGini=0
else:
trueTrue = ((pred + dataY) == 2).sum()
trueFalse = num_true - trueTrue
trueGini=1-(trueFalse**2+trueTrue**2)/num_true**2
return (num_false*falseGini+num_true*trueGini)/num_data
def decision_stump(dataArray):
num_data=dataArray.shape[0]
num_dim=dataArray.shape[1]-1
min_e=np.inf
min_s = np.inf
min_d=np.inf
min_theta = np.inf
min_pred=np.zeros((num_data,))
for d in range(num_dim):
sortedDataArray=GetSortedArray(dataArray,d)
d_min_e=np.inf
d_min_s = np.inf
d_min_theta = np.inf
d_min_pred = np.zeros((num_data,))
for s in [-1.0,1.0]:
for i in range(num_data):
if(i==0):
theta=-np.inf
pred=s*np.ones((num_data,))
else:
if sortedDataArray[i-1][d]==sortedDataArray[i][d]:
continue
theta=(sortedDataArray[i-1][d]+sortedDataArray[i][d])/2
pred=np.zeros((num_data,))
for n in range(num_data):
pred[n]=s*sign(dataArray[n,d]-theta)
d_now_e=GetWeightedImpurity(pred,dataArray[:,-1])
if(d_now_e<d_min_e):
d_min_e=d_now_e
d_min_s=s
d_min_theta=theta
d_min_pred=pred
if(d_min_e<min_e):
min_e=d_min_e
min_s=d_min_s
min_d=d
min_theta=d_min_theta
min_pred=d_min_pred
return min_s,min_d,min_theta,min_pred
paraDict={}
def decision_tree(id,dataArray,prune=False):
num_data=dataArray.shape[0]
num_dim=dataArray.shape[1]-1
dataX=dataArray[:,:-1]
dataY=dataArray[:,-1]
if(dataY.min()==dataY.max()): # y相同
return {id:dataY[0]}
tmpX=np.concatenate([dataX[0,:].reshape((1,num_dim))]*num_data,axis=0)
if(((dataX-tmpX)==0).all()): # x无法再分割
return {id:sign(np.sum(dataY))}
s,d,theta,pred=decision_stump(dataArray)
paraDict[id]=[s,d,theta]
falseArray,trueArray=GetSplitData(pred,dataArray)
if prune:
return {id:{-1:{id*2:sign(falseArray[:,-1].sum())},1:{id*2+1:sign(trueArray[:,-1].sum())}}}
falseTree=decision_tree(id*2,falseArray)
trueTree=decision_tree(id*2+1,trueArray)
return {id:{-1:falseTree,1:trueTree}}
def GetZeroOneError(pred,dataY):
return (pred!=dataY).sum()/dataY.shape[0]
def predict(treeDict,dataX):
num_data=dataX.shape[0]
pred=np.zeros((num_data,))
for n in range(num_data):
x=dataX[n,:]
id=1
tmp_dict=treeDict
while(1):
tmp_dict=tmp_dict[id]
if(type(tmp_dict).__name__!="dict"):
break
paraList = paraDict[id]
tmp_res=paraList[0]*sign(x[paraList[1]]-paraList[2])
tmp_dict=tmp_dict[tmp_res]
id=list(tmp_dict.keys())[0]
pred[n]=tmp_dict
return pred
def getNumLeafs(myTree):
numLeafs = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
if(type(secondDict).__name__=="dict"):
numLeafs += getNumLeafs(secondDict[-1])
numLeafs+=getNumLeafs(secondDict[1])
else:
numLeafs += 1
return numLeafs
def getTreeDepth(myTree):
maxDepth = 0
firstStr = list(myTree.keys())[0]
secondDict = myTree[firstStr]
if(type(secondDict).__name__=="dict"):
thisDepth = 1 + max(getTreeDepth(secondDict[-1]),getTreeDepth(secondDict[1]))
else:
thisDepth = 1
if thisDepth > maxDepth: maxDepth = thisDepth
return maxDepth
import matplotlib.pyplot as plt
decisionNode = dict(boxstyle="round", fc="0.8",pad=0.8)
leafNode = dict(boxstyle="circle", fc="0.8",pad=0.1)
arrow_args = dict(arrowstyle="<-")
def plotNode(nodeTxt, centerPt, parentPt, nodeType):
createPlot.ax1.annotate(nodeTxt, xy=parentPt, xycoords='axes fraction',
xytext=centerPt, textcoords='axes fraction',
va="center", ha="center", bbox=nodeType, arrowprops=arrow_args)
return
def plotMidText(centerPt, parentPt, txtString):
xMid = (parentPt[0] - centerPt[0]) / 2.0 + centerPt[0]
yMid = (parentPt[1] - centerPt[1]) / 2.0 + centerPt[1]
createPlot.ax1.text(xMid, yMid, txtString, va="center", ha="center", rotation=30)
return
def plotTree(myTree, centerPt, parentPt, nodeTxt):
firstStr = list(myTree.keys())[0]
if firstStr==1:
createPlot.ax1.annotate(str(1), xy=parentPt, xycoords='axes fraction',
va="center", ha="center",bbox=decisionNode)
elif firstStr in paraDict:
plotNode(str(firstStr),centerPt,parentPt,decisionNode)
plotMidText(centerPt,parentPt,nodeTxt)
else:
plotNode(str(myTree[firstStr]),centerPt,parentPt,leafNode)
plotMidText(centerPt,parentPt,nodeTxt)
return
secondDict = myTree[firstStr]
if (type(secondDict).__name__ == "dict"):
for key in secondDict.keys():
plotTree(secondDict[key],(centerPt[0]+key*plotTree.xDict[firstStr],centerPt[1]-1.0/plotTree.totalD)
,centerPt, str(key))
return
def createPlot(inTree,savename="13.png"):
fig = plt.figure(1, facecolor='white',figsize=(20,10))
fig.clf()
axprops = dict(xticks=[], yticks=[])
createPlot.ax1 = plt.subplot(111, frameon=False, **axprops)
plotTree.totalW = float(getNumLeafs(inTree))
plotTree.totalD = float(getTreeDepth(inTree))
plotTree.xDict={}
plotTree.xDict[1] = 4*1.0/plotTree.totalW
for i in range(2,int(plotTree.totalD)+1):
for j in range(2**(i-1),2**i):
plotTree.xDict[j]=plotTree.xDict[2**(i-2)]/1.8
plotTree(inTree,(0.43,1.0),(0.43, 1.0), '')
plt.savefig(savename)
return
if __name__=="__main__":
dataArray=ReadData("hw7_train.dat")
treeDict=decision_tree(1,dataArray)
print(treeDict)
# 13
createPlot(treeDict)
# 14
pred=predict(treeDict,dataArray[:,:-1])
ein=GetZeroOneError(pred,dataArray[:,-1])
print("the Ein of the tree:",ein)
# 15
testArray=ReadData("hw7_test.dat")
pred=predict(treeDict,testArray[:,:-1])
eout=GetZeroOneError(pred,testArray[:,-1])
print("the Eout of the tree:",eout)
16-20
# coding: utf-8
# random_forest.py
from decision_tree import *
def bagging(N,dataArray):
bagDataArray=[]
for n in range(N):
id=np.random.randint(low=0,high=dataArray.shape[0])
bagDataArray.append(dataArray[id,:])
return np.array(bagDataArray)
def random_forest(dataArray,iterations,prune=False):
num_data=dataArray.shape[0]
g_list=[]
ein_g_list=[]
ein_G_list=[]
pred_G=np.zeros((num_data,))
for t in range(iterations):
print(t+1)
bagDataArray=bagging(num_data,dataArray)
treeDict=decision_tree(1,bagDataArray,prune)
pred_g=predict(treeDict,dataArray[:,:-1])
pred_G+=pred_g
g_list.append(treeDict)
ein_g_list.append(GetZeroOneError(pred_g,dataArray[:,-1]))
tmpG=np.array(pred_G)
for i in range(num_data):
tmpG[i]=sign(tmpG[i])
ein_G_list.append(GetZeroOneError(tmpG,dataArray[:,-1]))
return g_list,ein_g_list,ein_G_list
def plot_line_chart(X=np.arange(0,3000,1).tolist(),Y=np.arange(0,3000,1).tolist(),nameX="t",nameY="Ein(gt)",saveName="16.png"):
plt.figure(figsize=(30,12))
plt.plot(X,Y,'b')
plt.plot(X,Y,'ro')
plt.xlim((X[0]-1,X[-1]+1))
for (x,y) in zip(X,Y):
if(x%100==0):
plt.text(x+0.1,y,str(round(y,4)))
plt.xlabel(nameX)
plt.ylabel(nameY)
plt.title(nameY+" versus "+nameX)
plt.savefig(saveName)
return
def plot_bar_chart(X=np.arange(0,3000,1).tolist(),Y=np.arange(0,300,1).tolist(),nameX="t",nameY="Ein(gt)",saveName="16.png"):
plt.figure(figsize=(30,12))
plt.bar(left=X,height=Y,width=1,align="center",yerr=0.000001)
for (c,w) in zip(X,Y):
if(c%100==0):
plt.text(c,w*1.03,str(round(w,4)))
plt.xlabel(nameX)
plt.ylabel(nameY)
plt.xlim(X[0]-1,X[-1]+1)
plt.ylim(0,1)
plt.title(nameY+" versus "+nameX)
plt.savefig(saveName)
return
if __name__ == "__main__":
dataArray = ReadData("hw7_train.dat")
g_list, ein_g_list, ein_G_list = random_forest(dataArray, 3000)
# 16
plot_bar_chart(Y=ein_g_list)
# 17
plot_line_chart(Y=ein_G_list, nameY="Ein(Gt)", saveName="17.png")
testArray = ReadData("hw7_test.dat")
num_test = testArray.shape[0]
pred_G = np.zeros((num_test,))
eout_G_list = []
for t in range(3000):
print(t+1)
pred_g = predict(treeDict=g_list[t],dataX=testArray[:, :-1])
pred_G += pred_g
tmpG = np.array(pred_G)
for i in range(num_test):
tmpG[i] = sign(tmpG[i])
eout_G_list.append(GetZeroOneError(tmpG, testArray[:, -1]))
# 18
plot_line_chart(Y=eout_G_list, nameY="Eout(Gt)", saveName="18.png")
g_list, ein_g_list, ein_G_list = random_forest(dataArray, 3000, True)
# 19
plot_line_chart(Y=ein_G_list, nameY="Ein(Gt)", saveName="19.png")
pred_G = np.zeros((num_test,))
eout_G_list = []
for t in range(3000):
print(t+1)
pred_g = predict(treeDict=g_list[t],dataX=testArray[:, :-1])
pred_G += pred_g
tmpG = np.array(pred_G)
for i in range(num_test):
tmpG[i] = sign(tmpG[i])
eout_G_list.append(GetZeroOneError(tmpG, testArray[:, -1]))
# 20
plot_line_chart(Y=eout_G_list, nameY="Eout(Gt)", saveName="20.png")
运行结果
机器学习技法笔记:Homework #7 Decision Tree&Random Forest相关习题的更多相关文章
- 机器学习技法笔记:09 Decision Tree
Roadmap Decision Tree Hypothesis Decision Tree Algorithm Decision Tree Heuristics in C&RT Decisi ...
- [ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest)
[ML学习笔记] 决策树与随机森林(Decision Tree&Random Forest) 决策树 决策树算法以树状结构表示数据分类的结果.每个决策点实现一个具有离散输出的测试函数,记为分支 ...
- 机器学习技法笔记(2)-Linear SVM
从这一节开始学习机器学习技法课程中的SVM, 这一节主要介绍标准形式的SVM: Linear SVM 引入SVM 首先回顾Percentron Learning Algrithm(感知器算法PLA)是 ...
- 机器学习技法笔记:11 Gradient Boosted Decision Tree
Roadmap Adaptive Boosted Decision Tree Optimization View of AdaBoost Gradient Boosting Summary of Ag ...
- Coursera台大机器学习技法课程笔记11-Gradient Boosted Decision Tree
将Adaboost和decision tree相结合,需要注意的地主是,训练时adaboost需要改变资料的权重,如何将有权重的资 料和decision tree相结合呢?方法很类似于前面讲过的bag ...
- 机器学习技法笔记:10 Random Forest
Roadmap Random Forest Algorithm Out-Of-Bag Estimate Feature Selection Random Forest in Action Summar ...
- 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm
一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...
- 机器学习算法实践:决策树 (Decision Tree)(转载)
前言 最近打算系统学习下机器学习的基础算法,避免眼高手低,决定把常用的机器学习基础算法都实现一遍以便加深印象.本文为这系列博客的第一篇,关于决策树(Decision Tree)的算法实现,文中我将对决 ...
- 机器学习技法笔记:Homework #8 kNN&RBF&k-Means相关习题
原文地址:https://www.jianshu.com/p/1db700f866ee 问题描述 程序实现 # kNN_RBFN.py # coding:utf-8 import numpy as n ...
随机推荐
- python 100day notes (1)
x1 + x2 +x3 + x4 = 8 多少正整数解 上面的问题等同于将8个苹果分成四组每组至少一个苹果有多少种方案 即用三个隔板插7个空位. 答案C(7,3) =35 # __name__是Pyt ...
- 如何将当前平台升级到SonarQube7.9?[最新]
整体思路 准备测试数据(实际环境可跳过此步骤) 数据库迁移(从版本7.9开始,SonarQube将不再支持MySQL,Mysql-->PG) Sonar版本升级(6.7.7 -> 7.9. ...
- cs224d 作业 problem set1 (二) 简单的情感分析
使用在上一篇博客中训练好的wordvector 在这一节进行情感分析. 因为在上一节中得到的是一个词就是一个向量 所以一句话便是一个矩阵,矩阵的每一列表示一个词向量 情感分析的前提是已知一句话是 (超 ...
- Java继承和构造函数
构造函数不是类的成员,它们不是由子类继承的.它们用于初始化实例变量. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 class CSuper { public ...
- Netty教程
Netty是一个java开源框架.Netty提供异步的.事件驱动的网络应用程序框架和工具,用以快速开发高性能.高可靠性的网络服务器和客户端程序. Netty是一个NIO客户端.服务端框架.允许快速简单 ...
- 火狐foxyproxy + burp
下载 火狐foxyproxy 和 burp 两个代理ip端口填写一致 如果对于公司有正向代理服务器,则需要配置burp的上游代理 对于IE浏览器的代理是windows操作系统的全局代理,在ie配置代理 ...
- 关于软件IntelliJ IDEA的使用技巧(二)
二,IntelliJ IDEA的工具栏介绍 2,IntelliJ IDEA菜单栏 (5)code编码 ✌1.Override Methods:覆盖方法 ✌2.Implement Methods:实现方 ...
- SQL查询条件生成小工具
最近运维数据,经常遇到需要在sql条件中个In('',''....)个字符串的情况,于是在网上找了个小工具改造一下,先用着: 效果如图: using System; using System.Coll ...
- 2019-8-31-How-to-use-code-to-exit-the-application-in-UWP
title author date CreateTime categories How to use code to exit the application in UWP lindexi 2019- ...
- tar - tar 档案文件管理程序的 GNU 版本。
总览 tar [ - ] A --catenate --concatenate | c --create | d --diff --compare | r --append | t --list | ...