HDU 6470 /// 矩阵快速幂
题目大意:
f[1]=1 f[2]=2
f[n]=f[n-1]+2*f[n-2]+n^3
在某博客截的图 现在忘记原博位置了 抱歉
根据递推式1和递推式3构造出两个矩阵
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LL long long
#define inc(i,j,k) for(int i=j;i<=k;i++)
#define dec(i,j,k) for(int i=j;i>=k;i--)
#define gcd(i,j) __gcd(i,j)
#define mem(i,j) memset(i,j,sizeof(i))
const int N=1e5+;
const int M=;
const int mod=; LL n,m;
struct MAT {
LL a[M][M];
MAT(){ mem(a,); }
MAT operator*(MAT p) {
MAT res;
for(int i=;i<M;i++)
for(int j=;j<M;j++)
for(int k=;k<M;k++)
res.a[i][j]=(res.a[i][j]+a[i][k]*p.a[k][j])%mod;
return res;
}
};
MAT mod_pow(MAT A,LL x) {
MAT res;
res.a[][]=;
while(x) {
if(x&) res=res*A;
A=A*A; x>>=;
}
return res;
}
void init(MAT& A,MAT& B) {
A.a[][]=,A.a[][]=,A.a[][]=,
A.a[][]=,
A.a[][]=,A.a[][]=,A.a[][]=,A.a[][]=,
A.a[][]=,A.a[][]=,A.a[][]=,
A.a[][]=,A.a[][]=,
A.a[][]=;
B.a[][]=,B.a[][]=,B.a[][]=,B.a[][]=,B.a[][]=,B.a[][]=;
} int main()
{
int _; scanf("%d",&_);
while(_--) {
LL n; scanf("%lld",&n);
MAT A; MAT ans;
init(A,ans);
ans=mod_pow(A,n-2LL)*ans;
printf("%lld\n",ans.a[][]);
} return ;
}
HDU 6470 /// 矩阵快速幂的更多相关文章
- HDU 2855 (矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2855 题目大意:求$S(n)=\sum_{k=0}^{n}C_{n}^{k}Fibonacci(k)$ ...
- HDU 4471 矩阵快速幂 Homework
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4471 解题思路,矩阵快速幂····特殊点特殊处理····· 令h为计算某个数最多须知前h个数,于是写 ...
- HDU - 1575——矩阵快速幂问题
HDU - 1575 题目: A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据. 每组数据的第一行有n( ...
- hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...
- 随手练——HDU 5015 矩阵快速幂
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5015 看到这个限时,我就知道这题不简单~~矩阵快速幂,找递推关系 我们假设第一列为: 23 a1 a2 ...
- HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识
求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...
- How many ways?? HDU - 2157 矩阵快速幂
题目描述 春天到了, HDU校园里开满了花, 姹紫嫣红, 非常美丽. 葱头是个爱花的人, 看着校花校草竞相开放, 漫步校园, 心情也变得舒畅. 为了多看看这迷人的校园, 葱头决定, 每次上课都走不同的 ...
- HDU 5950 矩阵快速幂
Recursive sequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Other ...
- hdu 1757 矩阵快速幂 **
一看正确率这么高,以为是水题可以爽一发,结果是没怎么用过的矩阵快速幂,233 题解链接:点我 #include<iostream> #include<cstring> ; us ...
随机推荐
- springcloud费话之Eureka接口调用(feign)
目录: springcloud费话之Eureka基础 springcloud费话之Eureka集群 springcloud费话之Eureka服务访问(restTemplate) springcloud ...
- 常用颜色的RGB分布
RGB色彩模式是工业界的一种颜色标准,它通过对红(RED).绿(GREEN).蓝(BLUE)三种基本颜色的相互组合从而叠加出各种颜色.RGB色彩模式为每一个红.绿.蓝分类了0-255范围内的亮度值. ...
- 使用join和CountDownLatch来等待线程结束
1.join方法的实现 join只能在start()之后调用, join 某个线程A,会使当前线程B进入等待,直到线程A结束生命周期(isAlive()==false) ,或者达到给定的时间. 在此期 ...
- Redis5.0集群搭建实战
安装环境: 6台 centos7.4 在各个节点下载官网release包,可以自己去官网找: wget http://download.redis.io/releases/redis-5.0.5.t ...
- rabbitmq路由规则
信道如何共用???? 几台机器共用一个channel 如何做到?
- Vue实例与组件的关系
所有的 Vue 组件都是 Vue 实例,可以看成Vue组件就是Vue实例的扩展. <div id="app"> <child></child> ...
- Python3.5-20190526-廖老师-自我笔记-单元测试-参数换-paramunittest
参数化: import timeimport list1 #想测试list1中的求和函数是否正确fun1import paramunittestimport unittest #先设置参数组@para ...
- maven仓库mirrors
<mirrors> <mirror> <id>alimaven</id> <name>aliyun maven</name> & ...
- 人生苦短_我用Python_configparser/yaml对配置文件读取/写入操作_010
第一,我们先开始安装yaml库,configparser是自带库,yaml库是针对读取yml文件,configparser现阶段我只用于读取conf文件 首先:1)对象文件为:data.yml,下面的 ...
- 【leetcode】543. Diameter of Binary Tree
题目如下: 解题思路:最长的周长一定是树中某一个节点(不一定是根节点)的左右子树中的两个叶子节点之间的距离,所以最简单的办法就是把树中所有节点的左右子树中最大的两个叶子节点之间的距离求出来,最终得到最 ...