Stancu likes space travels but he is a poor software developer and will never be able to buy his own spacecraft. That is why he is preparing to steal the spacecraft of Petru. There is only one problem – Petru has locked the spacecraft with a sophisticated cryptosystem based on the ID numbers of the stars from the Milky Way Galaxy. For breaking the system Stancu has to check each subset of four stars such that the only common divisor of their numbers is 1. Nasty, isn’t it? Fortunately, Stancu has succeeded to limit the number of the interesting stars to N but, any way, the possible subsets of four stars can be too many. Help him to find their number and to decide if there is a chance to break the system.

Input

In the input file several test cases are given. For each test case on the first line the number N of interesting stars is given (1 ≤ N ≤ 10000). The second line of the test case contains the list of ID numbers of the interesting stars, separated by spaces. Each ID is a positive integer which is no greater than 10000. The input data terminate with the end of file.

Output

For each test case the program should print one line with the number of subsets with the asked property.

Sample Input

4
2 3 4 5
4
2 4 6 8
7
2 3 4 5 7 6 8

Sample Output

1
0
34 题意:给了你n个数,让你从中选出四个求出gcd(a,b,c,d)=1的对数 思路:莫比乌斯反演
首先莫比乌斯反演有两种形式,
反演公式一 f(n) = 累加(d|n) mu(d)*F(n/d)
反演公式二 f(n) = 累加(n|d) mu(d/n)*F(d) 我们设 F(n)为 gcd(a,b,c,d)==n的倍数 的对数
我们设 f(n)为 gcd(a,b,c,d)==n    的对数 那我们就是要求f(1),那就相当于 f(1) = 累加(1-n)mu(d)*F(d)
F(n) 即我求出所有数中有多少个是n个倍数即可,然后求出C(m,4)即是答案
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<iostream>
#define maxn 100005
#define mod 1000000007
using namespace std;
typedef long long ll;
ll n;
ll mu[maxn+];
ll vis[maxn+];
ll a[maxn+];
ll tot[maxn+];
void init(){
for(int i=;i<maxn;i++){
vis[i]=;
mu[i]=;
}
for(int i=;i<maxn;i++){
if(vis[i]==){
mu[i]=-;
for(int j=*i;j<maxn;j+=i){
vis[j]=;
if((j/i)%i==) mu[j]=;
else mu[j]*=-;
}
}
}
}
void get(){
for(int i=;i<n;i++){
ll x=a[i];
ll t=sqrt(x);
for(int j=;j<=t;j++){
if(x%j==){
tot[j]++;
if(x/j!=j) tot[x/j]++;
}
}
}
}
ll C(ll x){
if(x==) return ;
return x*(x-)*(x-)*(x-)/;
}
int main(){
init();
while(scanf("%lld",&n)!=EOF){
memset(tot,,sizeof(tot));
for(int i=;i<n;i++){
scanf("%lld",&a[i]);
}
get();
ll sum=;
for(int i=;i<=maxn;i++){
sum+=mu[i]*C(tot[i]);
}
printf("%lld\n",sum);
}
return ;
}
												

POJ 3904 (莫比乌斯反演)的更多相关文章

  1. POJ 3904 JZYZOJ 1202 Sky Code 莫比乌斯反演 组合数

    http://poj.org/problem?id=3904   题意:给一些数,求在这些数中找出四个数互质的方案数.   莫比乌斯反演的式子有两种形式http://blog.csdn.net/out ...

  2. poj 3904(莫比乌斯反演)

    POJ 3904 题意: 从n个数中选择4个数使他们的GCD = 1,求总共有多少种方法 Sample Input 4 2 3 4 5 4 2 4 6 8 7 2 3 4 5 7 6 8 Sample ...

  3. UVa 10214 (莫比乌斯反演 or 欧拉函数) Trees in a Wood.

    题意: 这道题和POJ 3090很相似,求|x|≤a,|y|≤b 中站在原点可见的整点的个数K,所有的整点个数为N(除去原点),求K/N 分析: 坐标轴上有四个可见的点,因为每个象限可见的点数都是一样 ...

  4. POJ 3904

    第一道莫比乌斯反演的题. 建议参看http://www.isnowfy.com/mobius-inversion/ 摘其中部分 证明的话感觉写起来会比较诡异,大家意会吧说一下这个经典题目:令R(M,N ...

  5. hdu1695 GCD(莫比乌斯反演)

    题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌 ...

  6. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  7. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  8. Bzoj2154 Crash的数字表格 乘法逆元+莫比乌斯反演(TLE)

    题意:求sigma{lcm(i,j)},1<=i<=n,1<=j<=m 不妨令n<=m 首先把lcm(i,j)转成i*j/gcd(i,j) 正解不会...总之最后化出来的 ...

  9. 莫比乌斯函数筛法 & 莫比乌斯反演

    模板: int p[MAXN],pcnt=0,mu[MAXN]; bool notp[MAXN]; void shai(int n){ mu[1]=1; for(int i=2;i<=n;++i ...

随机推荐

  1. operator函数操作符

    函数操作数() 可以实现将对象当函数使用. class Square{ public: double operator()(double x)const{return x*x;} };

  2. BeautifulSoup的用法

    BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后遍可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单. ...

  3. 杂项-Map:高德地图

    ylbtech-杂项-Map:高德地图 1.返回顶部 1. 开放分类:地图手机软件高德地图(Amap) 是国内一流的免费地图导航产品,也是基于位置的生活服务功能最全面.信息最丰富的手机地图,由国内最大 ...

  4. xcode安装pod

    参考了: https://blog.csdn.net/AugustDY/article/details/92078639 输入 ruby -v ,查看当前电脑的ruby版本,如果已经安装了ruby环境 ...

  5. UITableView 支持左右滑动(二)

    原理: 用tableView其中一个cell 来展示一个 UIScrollView, 在scrollview上很像放置子tableView 注意点: 外层tableView需要实现手势代理 /* 若重 ...

  6. H5rem

    <meta name="viewport" content="width=device-width,initial-scale=1,maximum-scale=1, ...

  7. python3反转列表的三种方式

    1.内建函数 reversed() li = [1,2,3,4,5,6] a = list(reversed(li)) print(a) 注意:reversed()函数返回的是一个迭代器,而不是一个L ...

  8. 网络命令-nc(二)

    继续Netcat 这个命令吧 1:远程拷贝文件 在本地输出 文件debian.img 到 192.168.5.40 主机12345端口监听 nc -v 192.168.5.40 12345 < ...

  9. 嵌入式C语言3.3 关键字---逻辑结构

    1. if  else if(条件表达式){ ****;} else {xxxxxx;} 2. switch    case    default 3. do   while   for 4. con ...

  10. Linux vsftpd服务配置以及三种验证方式以及常见错误解决办法

    文件传输协议(FTP): 文件传输协议(FTP,File Transfer Protocol),即能够让用户在互联网中上传.下载文件的文件协议,而FTP服务器就是支持FTP传输协议的主机,要想完成文件 ...