传送门

解题思路

数学题,推式子。求\(f(n)=\sum\limits_{i=0}^n\sum\limits_{j=0}^iS(i,j)2^jj!\)

首先可以把\(j\)往前提:

\[f(n)=\sum\limits_{j=0}^n2^jj!\sum\limits_{i=0}^nS(i,j)
\]

然后把斯特林数按照通项展开:

\[f(n)=\sum\limits_{j=0}^n2^jj!\sum\limits_{i=0}^n\tfrac{1}{m!}\sum\limits_{k=0}^j(-1)^kC(j,k)(j-k)^i
\]

众所周知,里面那个玩意可以写成卷积的形式:

\[f(n)=\sum\limits_{j=0}^n2^jj!\sum\limits_{k=0}^j\tfrac{(-1)^k}{k!}\tfrac{\sum\limits_{i=0}^n(j-k)^i}{(j-k)!}
\]

继续发现里面的第二项的分子是等比数列求和,设\(A(x)=\tfrac{(-1)^x}{k!}\),\(B(x)=\tfrac{\sum\limits_{i=0}^nx^i}{x!}\),把\(B\)里面的等比数列求和:

\[B(x)=\tfrac{i^{n+1}-1}{i!(i-1)}
\]

突然发现似乎所有东西都能求了,直接上\(NTT\)求卷积,再扫一遍就行了。时间复杂度\(O(nlogn)\)。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm> using namespace std;
const int N=100005;
const int MOD=998244353;
typedef long long LL; int n,A[N<<2],B[N<<2],rev[N<<2];
int fac[N],inv[N],limit=1,ans; inline int fast_pow(int x,int y){
int ret=1;
for(;y;y>>=1){
if(y&1) ret=(LL)ret*x%MOD;
x=(LL)x*x%MOD;
}
return ret;
} inline int add(int x){
if(x<0) x+=MOD;if(x>=MOD) x-=MOD;return x;
} inline void NTT(int *f,int type){
for(int i=0;i<limit;i++)
if(i<rev[i]) swap(f[i],f[rev[i]]);
int Wn,w,tmp;
for(int i=2;i<=limit;i<<=1){
Wn=fast_pow(3,(MOD-1)/i);
for(int j=0,len=i>>1;j<limit;j+=i){w=1;
for(int k=j;k<j+len;k++){
tmp=(LL)w*f[k+len]%MOD;f[k+len]=add(f[k]-tmp);
f[k]=add(f[k]+tmp);w=(LL)w*Wn%MOD;
}
}
}
if(type==1) return ;
int INV=fast_pow(limit,MOD-2);
reverse(f+1,f+limit);
for(int i=0;i<limit;i++) f[i]=(LL)f[i]*INV%MOD;
} int main(){
scanf("%d",&n);fac[0]=B[0]=1;B[1]=n+1;
for(int i=1;i<=n;i++) fac[i]=(LL)fac[i-1]*i%MOD;
inv[n]=fast_pow(fac[n],MOD-2);
for(int i=n-1;~i;i--) inv[i]=(LL)inv[i+1]*(i+1)%MOD;
while(limit<=2*n) limit<<=1;
for(int i=0;i<limit;i++) rev[i]=(rev[i>>1]>>1)|((i&1)?(limit>>1):0);
for(int i=0;i<=n;i++) A[i]=(i&1)?(MOD-inv[i]):inv[i];
for(int i=2;i<=n;i++)
B[i]=(LL)(fast_pow(i,n+1)-1)*inv[i]%MOD*fast_pow(i-1,MOD-2)%MOD;
NTT(A,1);NTT(B,1);
for(int i=0;i<limit;i++) A[i]=(LL)A[i]*B[i]%MOD;
NTT(A,-1);int now=1;
for(int i=0;i<=n;i++){
ans=(ans+(LL)fac[i]*now%MOD*A[i]%MOD)%MOD;
now<<=1;if(now>=MOD) now-=MOD;
}
printf("%d\n",ans);
return 0;
}

BZOJ 4555(第二类斯特林数+NTT)的更多相关文章

  1. bzoj 4555 [Tjoi2016&Heoi2016] 求和 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4555 关于第二类斯特林数:https://www.cnblogs.com/Wuweizhen ...

  2. BZOJ 4555:[TJOI2016&HEOI2016]求和(第二类斯特林数+NTT)

    题目链接 \(Description\) 求 \[\sum_{i=0}^n\sum_{j=0}^iS(i,j)2^jj!\]对998244353取模后的结果. \(n<=10^5\) \(Sol ...

  3. bzoj 5093 图的价值 —— 第二类斯特林数+NTT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5093 每个点都是等价的,从点的贡献来看,得到式子: \( ans = n * \sum\li ...

  4. BZOJ 5093: [Lydsy1711月赛]图的价值 第二类斯特林数+NTT

    定义有向图的价值为图中每一个点的度数的 \(k\) 次方之和. 求:对于 \(n\) 个点的无向图所有可能情况的图的价值之和. 遇到这种题,八成是每个点单独算贡献,然后累加起来. 我们可以枚举一个点的 ...

  5. BZOJ5093 [Lydsy1711月赛]图的价值 【第二类斯特林数 + NTT】

    题目链接 BZOJ5093 题解 点之间是没有区别的,所以我们可以计算出一个点的所有贡献,然后乘上\(n\) 一个点可能向剩余的\(n - 1\)个点连边,那么就有 \[ans = 2^{{n - 1 ...

  6. BZOJ4555 [Tjoi2016&Heoi2016]求和 【第二类斯特林数 + NTT】

    题目 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: S(i, j)表示第二类斯特林数,递推公式为: S(i, j) = j ∗ S(i − 1, j) + ...

  7. 【BZOJ4555】【TJOI2016】【HEOI2016】求和 (第二类斯特林数+NTT卷积)

    Description 在2016年,佳媛姐姐刚刚学习了第二类斯特林数,非常开心. 现在他想计算这样一个函数的值: $$f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\tim ...

  8. bzoj5093:图的价值(第二类斯特林数+NTT)

    传送门 首先,题目所求为\[n\times 2^{C_{n-1}^2}\sum_{i=0}^{n-1}C_{n-1}^ii^k\] 即对于每个点\(i\),枚举它的度数,然后计算方案.因为有\(n\) ...

  9. P4091 [HEOI2016/TJOI2016]求和(第二类斯特林数+NTT)

    传送门 首先,因为在\(j>i\)的时候有\(S(i,j)=0\),所以原式可以写成\[Ans=\sum_{i=0}^n\sum_{j=0}^nS(i,j)\times 2^j\times j! ...

随机推荐

  1. blob格式导出文件

    最近在做blob流导出相关功能,其中需要导出excel.csv.word.zip压缩文件之类的,在导出excel和word中需要知道对应的content-type属性,正好看到下面这篇文章,感觉挺好的 ...

  2. [信息学奥赛一本通oj1741]电子速度 题解

    对于$100 \%$的数据,$1≤n,m≤1e6 \ \ \ 0<=x_i,y_i<20170927 \ \ \ 1≤l_i,r_i≤n $ $Solution:$ 一开始没看懂题.后来大 ...

  3. 执行hbase zkcli命令报错

    执行hbase zkcli后报错信息如下: 15/10/02 15:17:55 INFO zookeeper.ZooKeeper: Client environment:java.library.pa ...

  4. java String 类特点

    String的设计是一个典型的单一模式 String str1="AAAA":String str2="AAAA": 这生成两个对象吗?不是.在内存中,这是同一 ...

  5. laravel 向多视图及所有视图传递数据变量

    向单个视图传递变量 1.使用with()方法 : view('user.lists')->with('title',$title); 2.直接view()传参: view('user.lists ...

  6. python3+django2 个人简单博客实现 -正在施工

  7. day 101 天

    一.新建项目 +安装bootstrap 安装bootstrap组件 二.Vue-route的使用 1. router.js配置文件 2. vue文件 3. Header.js文件

  8. tp5 之 "No input file specified

    tp5 之 "No input file specified" 问题 通过"域名/模块/控制器/方法"这样的方式访问的时候,浏览器输出如下: 直接通过" ...

  9. c# WPF DataGrid 获取选中单元格信息

    private void Dg_SelectedCellsChanged(object sender, SelectedCellsChangedEventArgs e) { Console.Write ...

  10. MVC http://stackoverflow.com/tags/model-view-controller/info

    About model-view-controller Model–View–Controller (MVC) is an architectural pattern used in software ...