题意:给定一个n*m的平面,有k条垂直或平行的直线,问将平面分成了几个互不联通的部分

n,m<=1e9,k<=1e5

思路:

刻在DNA里的二维数点

 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int,int> PII;
typedef pair<ll,ll> Pll;
typedef vector<int> VI;
typedef vector<PII> VII;
#define N 410000
#define M 4100000
#define fi first
#define se second
#define MP make_pair
#define pi acos(-1)
#define mem(a,b) memset(a,b,sizeof(a))
#define rep(i,a,b) for(int i=(int)a;i<=(int)b;i++)
#define per(i,a,b) for(int i=(int)a;i>=(int)b;i--)
#define lowbit(x) x&(-x)
#define Rand (rand()*(1<<16)+rand())
#define id(x) ((x)<=B?(x):m-n/(x)+1)
#define ls p<<1
#define rs p<<1|1 const ll MOD=1e9+,inv2=(MOD+)/;
double eps=1e-;
int INF=1e9;
int da[]={-,,,};
int db[]={,,-,}; char ch[N][];
int t[N<<],x[N],y[N],c[N],p; struct arr1
{
int t,x,y;
}a[N]; bool cmp1(arr1 a,arr1 b)
{
return a.t<b.t;
} struct arr2
{
int x1,x2,y;
}b[N]; bool cmp2(arr2 a,arr2 b)
{
return a.y<b.y;
} int read()
{
int v=,f=;
char c=getchar();
while(c<||<c) {if(c=='-') f=-; c=getchar();}
while(<=c&&c<=) v=(v<<)+v+v+c-,c=getchar();
return v*f;
} int lisan(int x)
{
int l=,r=p,last=;
while(l<=r)
{
int mid=(l+r)>>;
if(c[mid]>x) r=mid-;
if(c[mid]==x){last=mid; r=mid-;}
if(c[mid]<x) l=mid+;
}
return last;
} void build(int l,int r,int p)
{
t[p]=;
if(l==r) return;
int mid=(l+r)>>;
build(l,mid,ls);
build(mid+,r,rs);
} int query(int l,int r,int x,int y,int p)
{
if(x<=l&&r<=y) return t[p];
int mid=(l+r)>>;
int s=;
if(x<=mid) s+=query(l,mid,x,y,ls);
if(y>mid) s+=query(mid+,r,x,y,rs);
return s;
} void update(int l,int r,int x,int v,int p)
{
if(l==r)
{
t[p]+=v;
return;
}
int mid=(l+r)>>;
if(x<=mid) update(l,mid,x,v,ls);
else update(mid+,r,x,v,rs);
t[p]=t[ls]+t[rs];
} int main()
{
//freopen("1.in","r",stdin);
//freopen("1.out","w",stdout); int cas;
scanf("%d",&cas); while(cas--)
{
int n=read(),m=read(),K=read();
ll ans=;
int m1=,m2=;
p=;
rep(i,,K)
{
x[i]=read(),y[i]=read();
scanf("%s",ch[i]+);
//if(ch[i][1]=='U'&&y[i]==) ans++;
//if(ch[i][1]=='R'&&x[i]==1) ans++;
c[++p]=x[i];
c[++p]=y[i];
}
//printf("ans=%I64d\n",ans);
c[++p]=n;
c[++p]=m;
c[++p]=;
sort(c+,c+p+);
rep(i,,K)
{
x[i]=lisan(x[i]);
y[i]=lisan(y[i]);
}
n=lisan(n),m=lisan(m);
rep(i,,K)
{
if(ch[i][]=='U')
{
m1++;
a[m1].t=y[i];
a[m1].x=x[i];
a[m1].y=;
//a[m1].x=x[i];
//a[m1].y1=y[i];
//a[m1].y2=m;
}
if(ch[i][]=='D')
{
m1++;
a[m1].t=;
a[m1].x=x[i];
a[m1].y=; m1++;
a[m1].t=y[i]+;
a[m1].x=x[i];
a[m1].y=-;
//a[m1].x=x[i];
//a[m1].y1=1;
//a[m1].y2=y[i];
}
if(ch[i][]=='L')
{
m2++;
b[m2].x1=;
b[m2].x2=x[i];
b[m2].y=y[i];
}
if(ch[i][]=='R')
{
m2++;
b[m2].x1=x[i];
b[m2].x2=n;
b[m2].y=y[i];
}
}
sort(a+,a+m1+,cmp1);
sort(b+,b+m2+,cmp2);
build(,p,);
int j1=,j2=;
rep(i,,p)
{
while(j1<=m1&&a[j1].t==i)
{
update(,p,a[j1].x,a[j1].y,);
j1++;
}
while(j2<=m2&&b[j2].y==i)
{
ans+=query(,p,b[j2].x1,b[j2].x2,);
j2++;
}
}
printf("%I64d\n",ans+); } return ;
}

【HDOJ6681】Rikka with Cake(扫描线,线段树)的更多相关文章

  1. HDU 3642 - Get The Treasury - [加强版扫描线+线段树]

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3642 Time Limit: 10000/5000 MS (Java/Others) Memory L ...

  2. 【BZOJ3958】[WF2011]Mummy Madness 二分+扫描线+线段树

    [BZOJ3958][WF2011]Mummy Madness Description 在2011年ACM-ICPC World Finals上的一次游览中,你碰到了一个埃及古墓. 不幸的是,你打开了 ...

  3. HDU 3265/POJ 3832 Posters(扫描线+线段树)(2009 Asia Ningbo Regional)

    Description Ted has a new house with a huge window. In this big summer, Ted decides to decorate the ...

  4. 【bzoj4491】我也不知道题目名字是什么 离线扫描线+线段树

    题目描述 给定一个序列A[i],每次询问l,r,求[l,r]内最长子串,使得该子串为不上升子串或不下降子串 输入 第一行n,表示A数组有多少元素接下来一行为n个整数A[i]接下来一个整数Q,表示询问数 ...

  5. hdu1542 Atlantis(扫描线+线段树+离散)矩形相交面积

    题目链接:点击打开链接 题目描写叙述:给定一些矩形,求这些矩形的总面积.假设有重叠.仅仅算一次 解题思路:扫描线+线段树+离散(代码从上往下扫描) 代码: #include<cstdio> ...

  6. P3722 [AH2017/HNOI2017]影魔(单调栈+扫描线+线段树)

    题面传送门 首先我们把这两个贡献翻译成人话: 区间 \([l,r]\) 产生 \(p_1\) 的贡献当且仅当 \(a_l,a_r\) 分别为区间 \([l,r]\) 的最大值和次大值. 区间 \([l ...

  7. BZOJ 2584: [Wc2012]memory(扫描线+线段树)

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2584 题意:给出平面n个线段,任意两个线段严格不相交,且每个线段不平行于坐标轴.移 ...

  8. HDU 5828 Rikka with Sequence (线段树)

    Rikka with Sequence 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5828 Description As we know, Rik ...

  9. zoj 3511 Cake Robbery(线段树)

    problemCode=3511" target="_blank" style="">题目链接:zoj 3511 Cake Robbery 题目 ...

  10. [BZOJ 1218] [HNOI2003] 激光炸弹 【n logn 做法 - 扫描线 + 线段树】

    题目链接:BZOJ - 1218 题目分析 可以覆盖一个边长为 R 的正方形,但是不能包括边界,所以等价于一个边长为 R - 1 的正方形. 坐标范围 <= 5000 ,直接 n^2 的二维前缀 ...

随机推荐

  1. 转)delphi chrome cef3 控件学习笔记 (二)

    (转)delphi chrome cef3 控件学习笔记 (二) https://blog.csdn.net/risesoft2012/article/details/51260832 原创 2016 ...

  2. 《计算机程式设计》Week2 课堂笔记

    本笔记记录自 Coursera课程 <计算机程式设计> 台湾大学 刘邦锋老师 Week2 Control Structure 2-1 If-then-else if then 判断 if ...

  3. vmware14克隆后UUID相同的解决方法

    查看网卡 UUID值 [root@localhost network-scripts]# nmcli connection showNAME UUID TYPE DEVICE ens33 cf228d ...

  4. 大数据架构师必读的NoSQL建模技术

    大数据架构师必读的NoSQL建模技术 从数据建模的角度对NoSQL家族系统做了比较简单的比较,并简要介绍几种常见建模技术. 1.前言 为了适应大数据应用场景的要求,Hadoop以及NoSQL等与传统企 ...

  5. 机器学习--如何将NLP应用到深度学习(3)

    数据收集以后,我们下面接着要干的事情是如何将文本转换为神经网络能够识别的东西.   词向量 作为自然语言,只有被数学化才能够被计算机认识和计算.数学化的方法有很多,最简单的方法是为每个词分配一个编号, ...

  6. CentOS 6 安装Syslog-ng

    entOS 6 安装 Syslog-ng 一. yum 安装 syslog-ng3.7.1 是专门用于RHEL/CentOS version 6 ,不要安装成其他版本.亲身经历,安装成syslog-n ...

  7. MySQL-mysql 8.0.11安装教程 windows

    网上的教程有很多,基本上大同小异.但是安装软件有时就可能因为一个细节安装失败.我也是综合了很多个教程才安装好的,所以本教程可能也不是普遍适合的. 安装环境:win7 1.下载zip安装包: MySQL ...

  8. Nginx主要功能及使用

    Nginx配置详解   序言 Nginx是lgor Sysoev为俄罗斯访问量第二的rambler.ru站点设计开发的.从2004年发布至今,凭借开源的力量,已经接近成熟与完善. Nginx功能丰富, ...

  9. python基础-3 集合 三元运算 深浅拷贝 函数 Python作用域

    上节课总结 1 运算符 in 字符串 判断  : “hello” in "asdasfhelloasdfsadf" 列表元素判断:"li" in ['li', ...

  10. 在无界面centos7上部署MYSQL5.7数据库

    1. 利用xshell连接好服务后,输入 wget http://dev.mysql.com/get/mysql57-community-release-el7-8.noarch.rpm 下载软件安装 ...