作者:贾春生,http://dwz.win/myg
SELECT COUNT( * ) FROM TABLE 是个再常见不过的 SQL 需求了。
在 MySQL 的使用规范中,我们一般使用事务引擎 InnoDB 作为(一般业务)表的存储引擎,在此前提下,COUNT( * )操作的时间复杂度为 O(N),其中 N 为表的行数。
而 MyISAM 表中可以快速取到表的行数。这些实践经验的背后是怎样的机制,以及为什么需要/可以是这样,就是此文想要探讨的。
先来看一下概况,MySQL COUNT( * ) 在 2 种存储引擎中的部分问题:
下面就带着这些问题,以 InnoDB 存储引擎为主来进行讨论。
一、InnoDB 全表 COUNT( * )

主要问题:

1、执行过程是怎样的?

2、如何计算 count?影响 count 结果的因素有哪些?
3、count 值存在哪里?涉及的数据结构是怎样的?
4、为什么 InnoDB 只能通过扫表来实现 count( * )?(见本文最后的问题)
5、全表COUNT( * )作为 table scan 类型操作的一个 case,有什么风险?
6、COUNT(* )操作是否会像“SELECT * ”一样可能读取大字段涉及的溢出页?
1、执行框架 – 循环: 读取 + 计数?

1.1、基本结论:

  • 全表扫描,一个循环解决问题。

  • 循环内: 先读取一行,再决定该行是否计入 count。

  • 循环内是一行一行进行计数处理的。

1.2、说明:
简单 SELELCT-SQL 的执行框架,类比 INSERT INTO … SELECT 是同样的过程。
下面会逐步细化如何读取与计数 ( count++ ) 。
2、执行过程?
执行过程部分,分为 4 个部分:
(1)COUNT( * ) 前置流程: 从 Client 端发 SQL 语句,到 MySQL-Server 端执行 SELECT 之前,为后面的一些阐述做一铺垫。
(2)COUNT( * ) 流程: 简要给出代码层面的流程框架及 2 个核心步骤的重点调用栈部分。
(3)读取一行: 可见性及 row_search_mvcc 函数,介绍可见性如何影响 COUNT( * ) 结果。
(4)计数一行: Evaluate_join_record 与列是否为空,介绍计数过程如何影响 COUNT( * ) 结果。
如果读者希望直接看如何进行 COUNT( * ),那么也可以忽略 (1),而直接跳到 (2) 开始看。

2.1、COUNT( * ) 前置流程回忆 – 从 Client 端发 SQL 到 sub_select 函数

为了使看到的调用过程不太突兀,我们还是先回忆一下如何执行到 sub_select 函数这来的:
(1)MySQL-Client 端发送 SQL 语句,根据 MySQL 通信协议封包发送。
(2)Mysql-Server 端接收数据包,由协议解析出 command 类型 ( QUERY ) 及 SQL 语句 ( 字符串 ) 。
(3)SQL 语句经过解析器解析输出为 JOIN 类的对象,用于结构化地表达该 SQL 语句。
PS: 这里的 JOIN 结构,不仅仅是纯语法结构,而是已经进行了语义处理,粗略地说,汇总了表的列表 ( table_list )、目标列的列表 ( target_list )、WHERE 条件、子查询等语法结构。
在全表 COUNT( * )-case 中,table_list = [表“t”(别名也是“t”)],target_list = [目标列对象(列名为“COUNT( * )”)],当然这里没有 WHERE 条件、子查询等结构。
(4)JOIN 对象有 2 个重要的方法: JOIN::optimize(), JOIN::exec(),分别用于进行查询语句的优化 和 查询语句的执行。
  • join->optimize(),优化阶段 (稍后 myisam 下全表 count( * ) 操作会涉及这里的一点内容)。

  • join->exec(),执行阶段 ( 重点 ),包含了 InnoDB 下全表count( * ) 操作的执行流程。

(5)join->exec() 经过若干调用,将调用到 sub_select 函数来执行简单 SQL,包括 COUNT( * ) 。
(6)END of sub_select 。

2.2、COUNT( * ) 流程 ( 于 sub_select 函数中 )

上层的流程与代码是比较简单的,集中在 sub_select 函数中,其中 2 类函数分别对应于前面”执行框架”部分所述的 2 个步骤 – 读取、计数。先给出结论如下:
(1)读取一行:从相对顶层的 sub_select 函数经过一番调用,最终所有分支将调用到 row_search_mvcc 函数中,该函数就是用于从 InnoDB 存储引擎所存储的 B+-tree 结构中读取一行到内存中的一个 buf (uchar * ) 中,待后续处理使用。
这里会涉及行锁的获取、MVCC 及行可见性的问题。当然对 于 SELECT COUNT( * ) 这类快照读而言,只会涉及 MVCC 及其可见性,而不涉及行锁。详情可跳至“可见性与 row_search_mvcc 函数”部分。
(2)计数一行: 代码层面,将会在 evaluate_join_record 函数中对所读取的行进行评估,看其是否应当计入 count 中 ( 即是否要 count++ )。
简单来说,COUNT(arg) 本身为 MySQL 的函数操作,对于一行来说,若括号内的参数 arg ( 某列或整行 ) 的值若不是 NULL,则 count++,否则对该行不予计数。详情可跳至“ Evaluate_join_record 与列是否为空”部分。
这两个阶段对 COUNT( * )结果的影响如下: (两层过滤)
SQL 层流程框架相关代码摘要如下:
Q:代码层面,第一步骤(读取一行)有 2 个分支,为什么?
A:从 InnoDB 接口层面考虑,分为 “读第一行” 和 “读下一行”,是 2 个不同的执行过程,读第一行需要找到一个 ( cursor ) 位置并做一些初始化工作让后续的过程可递归。
正如我们如果用脚本/程序来进行逐行的扫表操作,实现上就会涉及下面 2 个 SQL:
具体涉及到此例的代码,SQL 层到存储引擎层的调用关系,读取阶段的调用栈如下:(供参考)
我们可以看到,无论是哪一个分支的读取,最终都殊途同归于 row_search_mvcc 函数。
以上是对 LOOP 中的代码做一些简要的说明,下面来看 row_search_mvcc 与 evaluate_join_record 如何输出最终的 count 结果。

2.3、行可见性及 row_search_mvcc 函数

这里我们主要通过一组 case 和几个问题来看行可见性对 COUNT( * ) 的影响。
Q:对于“SELECT COUNT( * ) FROM t”或者“SELECT MIN(id) FROM t”操作,第一次的读行操作读到的是表 t 中 ( B+ 树最左叶节点 page 内 ) 的最小记录吗?( ha_index_first 为何也调用 row_search_mvcc 来获取最小 key 值?)
A:不一定。即使是 MIN ( id ) 也不一定就读取的是 id 最小的那一行,因为也同样有行可见性的问题,实际上 index_read 取到的是 当前事务内语句可见的最小 index 记录。这也反映了前面提到的 join_read_first 与 join_read_next “殊途同归”到 row_search_mvcc 是理所应当的。
Q:针对图中最后一问,如果事务 X 是 RU ( Read-Uncommitted ) 隔离级别,且 C-Insert ( 100 ) 的完成是在 X-count( * ) 执行过程中 ( 仅扫描到 5 或 10 这条记录 ) 完成的,那么 X-count( * ) 在事务 C-Insert ( 100 ) 完成后,能否在之后的读取过程中看到 100 这条记录呢?
A:MySQL 采取”读到什么就是什么”的策略,即 X-count( * ) 在后面可以读到 100 这条记录。

2.4、evaluate_join_record 与列是否为空

Q:某一行如何计入 count?
A:两种情况会将所读的行计入 count:
(1)如果 COUNT 函数中的参数是某列,则会判断所读行中该列定义是否 Nullable 以及该列的值是否为 NULL;若两者均为是,则不会计入 count,否则将计入 count。
  • e.g. SELECT COUNT(col_name) FROM t

  • col_name 可以是主键、唯一键、非唯一键、非索引字段

(2)如果 COUNT 中带有 * ,则会判断这部分的整行是否为 NULL,如果判断参数为 NULL,则忽略该行,否则 count++。
  • e.g-1. SELECT COUNT(*) FROM t

  • e.g-2. SELECT COUNT(B.*) FROM A LEFT JOIN B ON A.id = B.id

Q:特别地,对于 SELECT COUNT(id) FROM t,其中 id 字段是表 t 的主键,则如何?
A:效果上等价于 COUNT( * )。因为无论是 COUNT( * ),还是 COUNT ( pk_col ) 都是因为有主键从而充分断定索取数据不为 NULL,这类 COUNT 表达式可以用于获取当前可见的表行数。
Q:用户层面对 InnoDB COUNT( * ) 的优化操作问题
A:这个问题是业界熟悉的一个问题,扫描非空唯一键可得到表行数,但所涉及的字节数可能会少很多(在表的行长与主键、唯一键的长度相差较多时),相对的 IO 代价小很多。
相关调用栈参考如下:
二、数据结构
Q:count 值存储在哪个内存变量里?
A:SQL 解析后,存储于表达 COUNT( * ) 这一项中,((Item_sum_count*)item_sum)->count
如下图所示回顾我们之前“COUNT( * )前置流程”部分提到的 JOIN 结构。
即 SQL 解析器为每个 SQL 语句进行结构化,将其放在一个 JOIN 对象 ( join ) 中来表达。在该对象中创建并填充了一个列表 result_field_list 用于存放结果列,列表中每个元素则是一个结果列的 ( Item_result_field* ) 对象 ( 指针 ) 。
在 COUNT( * )-case 中,结果列列表只包含一个元素,( Item_sum_count: public Item_result_field ) 类型对象 ( name = “COUNT( * )”),其中该类所特有的成员变量 count即为所求。

三、MyISAM 全表 COUNT( * )

由于 MyISAM 引擎并不常用于实际业务中,仅做简要描述如下:
1、MyISAM-COUNT( * ) 操作是 O(1) 时间复杂度的操作。
2、每张 MyISAM 表中存放了一个 meta 信息-count 值,在内存中与文件中各有一份,内存中的 count 变量值通过读取文件中的 count 值来进行初始化。
3、SELECT COUNT( * ) FROM t 会直接读取内存中的表 t 对应的 count 变量值。
4、内存中的 count 值与文件中的 count 值由写操作来进行更新,其一致性由表级锁来保证。
5、表级锁保证的写入串行化使得,同一时刻所有用户线程的读操作要么被锁,要么只会看到一种数据状态。
四、几个问题
Q:MyISAM 与 InnoDB 在 COUNT( * ) 操作的执行过程在哪里开始分道扬镳?
  • 共性:共性存在于 SQL 层,即 SQL 解析之后的数据结构是一致的,count 变量都是存在于作为结果列的 Item_sum_count 类型对象中;返回给客户端的过程也类似 – 对该 count 变量进行赋值并经由 MySQL 通信协议返回给客户端。

  • 区别:InnoDB 的 count 值计算是在 SQL 执行阶段进行的;而 MyISAM 表本身在内存中有一份包含了表 row_count 值的 meta 信息,在 SQL 优化阶段通过存储引擎的标记给优化器一个 hint,表明该表所用的存储引擎保存了精确行数,可以直接获取到,无需再进入执行器。

Q:InnoDB 中为何无法向 MyISAM 一样维护住一个 row_count 变量?
A:从 MVCC 机制与行可见性问题中可得到原因,每个事务所看到的行可能是不一样的,其 count( * ) 结果也可能是不同的;反过来看,则是 MySQL-Server 端无法在同一时刻对所有用户线程提供一个统一的读视图,也就无法提供一个统一的 count 值。
PS: 对于多个访问 MySQL 的用户线程 ( COUNT( * ) ) 而言,决定它们各自的结果的因素有几个:
(1)一组事务执行前的数据状态(初始数据状态)。
(2)有时间重叠的事务们的执行序列 (操作时序,事务理论表明 并发事务操作的可串行化是正确性的必要条件)。
(3)事务们各自的隔离级别(每个操作的输入)。
其中 1、2 对于 Server 而言都是全局或者说可控的,只有 3 是每个用户线程中事务所独有的属性,这是 Server 端不可控的因素,因此 Server 端也就对每个 COUNT( * ) 结果不可控了。
Q:InnoDB-COUNT( * ) 属 table scan 操作,是否会将现有 Buffer Pool 中其它用户线程所需热点页从 LRU-list 中挤占掉,从而其它用户线程还需从磁盘 load 一次,突然加重 IO 消耗,可能对现有请求造成阻塞?
A:MySQL 有这样的优化策略,将扫表操作所 load 的 page 放在 LRU-list 的 oung/old 的交界处 ( LRU 尾部约 3/8 处 )。这样用户线程所需的热点页仍然在 LRU-list-young 区域,而扫表操作不断 load 的页则会不断冲刷 old 区域的页,这部分的页本身就是被认为非热点的页,因此也相对符合逻辑。
PS: 个人认为还有一种类似的优化思路,是限定扫描操作所使用的 Buffer Pool 的大小为 O(1) 级别,但这样做需要付出额外的内存管理成本。
Q:InnoDB-COUNT( * ) 是否会像 SELECT * FROM t 那样读取存储大字段的溢出页(如果存在)?
A:否。因为 InnoDB-COUNT( * ) 只需要数行数,而每一行的主键肯定不是 NULL,因此只需要读主键索引页内的行数据,而无需读取额外的溢出页。

- END -

关注Java技术栈微信公众号,在后台回复关键字:Java,可以获取一份栈长整理的 Java 最新技术干货。

最近干货分享

点击「阅读原文」和栈长学更多~

select count(*) 底层到底干了啥?的更多相关文章

  1. select count(*) 底层究竟做了什么?

    阅读本文大概需要 6.6 分钟. SELECT COUNT( * ) FROM t是个再常见不过的 SQL 需求了.在 MySQL 的使用规范中,我们一般使用事务引擎 InnoDB 作为(一般业务)表 ...

  2. Select count(*)、Count(1)、Count(0)的区别和执行效率比较

    记得很早以前就有人跟我说过,在使用count的时候要用count(1)而不要用count(*),因为使用count(*)的时候会对所有的列进行扫描,相比而言count(1)不用扫描所有列,所以coun ...

  3. MYSQL性能调优与架构设计之select count(*)的思考

    select count(*)的思考 原文:MYSQL性能调优与架构设计   举例: 这里我们就拿一个看上去很简单的功能来分析一下. 需求:一个论坛帖子总量的统计 附加要求:实时更新 在很多人看来,这 ...

  4. 转】MYSQL性能调优与架构设计之select count(*)的思考

    原博文出自于: http://blog.fens.me/category/%E6%95%B0%E6%8D%AE%E5%BA%93/page/5/ 感谢! Posted: Feb 7, 2013 Tag ...

  5. 不就是SELECT COUNT语句吗,竟然能被面试官虐的体无完肤

    数据库查询相信很多人都不陌生,所有经常有人调侃程序员就是CRUD专员,这所谓的CRUD指的就是数据库的增删改查. 在数据库的增删改查操作中,使用最频繁的就是查询操作.而在所有查询操作中,统计数量操作更 ...

  6. SELECT COUNT语句

    数据库查询相信很多人都不陌生,所有经常有人调侃程序员就是CRUD专员,这所谓的CRUD指的就是数据库的增删改查. 在数据库的增删改查操作中,使用最频繁的就是查询操作.而在所有查询操作中,统计数量操作更 ...

  7. SQL优化之SELECT COUNT(*)

    前言 SQL优化之SQL 进阶技巧(上) SQL优化之SQL 进阶技巧(下)中提到使用以下 sql 会导致慢查询 SELECT COUNT(*) FROM SomeTable SELECT COUNT ...

  8. MySQL之COUNT(*)性能到底如何?

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. GreatSQL是MySQL的国产分支版本,使用上与MySQL一致. 前言 在实际开发过程中,统计一个表的数据量是经常遇到 ...

  9. Select count(*)和Count(1)的区别和执行方式

        在SQL Server中Count(*)或者Count(1)或者Count([列])或许是最常用的聚合函数.很多人其实对这三者之间是区分不清的.本文会阐述这三者的作用,关系以及背后的原理.   ...

随机推荐

  1. Electron开发使用Vue Devtools

    转自 [https://orchidflower.oschina.io/2017/03/29/Using-Vue-Devtools-in-Electron/] 2.2 安装步骤 首先在Chrome中安 ...

  2. 【leetcode】Valid Palindrome II

    很久没有做题了,今天写个简单难度的练练手感. Given a non-empty string s, you may delete at most one character. Judge wheth ...

  3. 在 Cloudera Data Flow 上运行你的第一个 Flink 例子

    文档编写目的 Cloudera Data Flow(CDF) 作为 Cloudera 一个独立的产品单元,围绕着实时数据采集,实时数据处理和实时数据分析有多个不同的功能模块,如下图所示: 图中 4 个 ...

  4. 19. ClustrixDB 执行计划解读

    EXPLAIN语句用于显示ClustrixDB查询优化器(也称为Sierra)如何执行INSERT.SELECT.UPDATE和DELETE语句.EXPLAIN的输出有三列: Operation - ...

  5. ClustrixDB安装配置

    前提条件 在安装ClustrixDB之前,需要: ClustrixDB安装程序和许可证密钥. 运行CentOS或RHEL 7.4的服务器(本地或云中). 具有root或sudo特权来安装Clustri ...

  6. Linux入门培训教程 linux系统中文件I/O教程

    linux 文件I/O教程 一,文件描述符 对内核而言,所以打开的文件都通过文件描述符引用.每个进程都有一些与之关联的文件描述符.文件描述符是一个非负整数.当打开一个现有文件或创建一个新文件时,内核向 ...

  7. python常用类库总结

    个人学习总结,如有错误,请留言指正. 类库归类总结 类库关系

  8. @清晰掉 swap函数

    swap函数估计是一个各种各样程序都会频繁用到的子程序,可是你知道它究竟有多少种不同的写法吗?下面我就列举我知道的几种swap函数来跟大家分享一下. (1)经典型---嫁衣法 无论是写程序还是干其他事 ...

  9. 尚硅谷Docker---docker安装及简介

    尚硅谷Docker---docker安装及简介 一.总结 一句话总结: docker就相当于是一个极微型的linux系统,独立 1.使用Docker的步骤? 1).安装Docker 2).去Docke ...

  10. 分布式任务队列 Celery

    目录 目录 前言 简介 Celery 的应用场景 架构组成 Celery 应用基础 前言 分布式任务队列 Celery,Python 开发者必备技能,结合之前的 RabbitMQ 系列,深入梳理一下 ...