这是悦乐书的第374次更新,第401篇原创

01 看题和准备

今天介绍的是LeetCode算法题中Easy级别的第235题(顺位题号是993)。在二叉树中,根节点在深度0处,并且每个深度为k的节点的子节点,他们深度为k + 1

如果二元树的两个节点具有相同的深度但具有不同的父节点,则它们是堂兄弟。

我们给出了具有唯一值的二叉树root,以及树中两个不同节点的值xy

当且仅当对应于值x和y的节点是堂兄弟时,才返回true。例如:

输入:root = [1,2,3,4],x = 4,y = 3

      1
/ \
2 3
/
4

输出:false



输入:root = [1,2,3,null,4,null,5],x = 5,y = 4

      1
/ \
2 3
\ \
4 5

输出:true



输入:root = [1,2,3,null,4],x = 2,y = 3

      1
/ \
2 3
\
4

输出:false

注意

  • 树中的节点数将介于2和100之间。

  • 每个节点都有一个从1到100的唯一整数值。

02 第一种解法

题目的意思是xy在同一层,但是他们的父级节点不一样,也就是xy属于堂兄弟的关系。

使用BFS(广度优先)的算法,通过迭代的方式借助Stack来实现,使用了一个额外的方法,分别求出xy的层级和他们的父级节点,用一个长度为2的数组返回,如果xy的层级相同且父级结点不同,就返回true

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/ public boolean isCousins(TreeNode root, int x, int y) {
int[] arr = getTreeDepth(root, x);
int[] arr2 = getTreeDepth(root, y);
if (arr.length < 1 || arr2.length < 1) {
return false;
}
return arr[0] != arr2[0] && arr[1] == arr2[1];
} public int[] getTreeDepth(TreeNode root, int num) {
Stack<TreeNode> stack = new Stack<TreeNode>();
stack.push(root);
int depth = 0;
while (!stack.isEmpty()) {
Stack<TreeNode> stack2 = new Stack<TreeNode>();
while (!stack.isEmpty()) {
TreeNode tem = stack.pop();
if (tem.left != null) {
// 当前节点的左子节点值等于要找的数
if (tem.left.val == num) {
return new int[] {tem.val, depth+1};
}
stack2.push(tem.left);
}
if (tem.right != null) {
// 当前节点的右子节点值等于要找的数
if (tem.right.val == num) {
return new int[] {tem.val, depth+1};
}
stack2.push(tem.right);
}
}
stack = stack2;
depth++;
}
return new int[] {};
}

03 第二种解法

针对第一种解法,我们也可以将判断的方法融合在一起,依旧是借助

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/ public boolean isCousins2(TreeNode root, int x, int y) {
Stack<TreeNode> stack = new Stack<TreeNode>();
stack.push(root);
while (!stack.isEmpty()) {
Stack<TreeNode> stack2 = new Stack<TreeNode>();
boolean xExist = false, yExist = false;
while (!stack.isEmpty()) {
TreeNode tem = stack.pop();
if (tem.val == x) {
xExist = true;
}
if (tem.val == y) {
yExist = true;
}
// x和y不能有同一个父节点
if (tem.left != null && tem.right != null) {
if (tem.left.val == x && tem.right.val == y) {
return false;
}
if (tem.left.val == y && tem.right.val == x) {
return false;
}
}
if (tem.left != null) {
stack2.push(tem.left);
}
if (tem.right != null) {
stack2.push(tem.right);
}
}
stack = stack2;
if (xExist && yExist) {
return true;
}
}
return false;
}

04 第三种解法

和第二种解法思路一样,只是将栈换成了队列

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/ public boolean isCousins3(TreeNode root, int x, int y) {
Queue<TreeNode> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
int size = queue.size();
boolean xExist = false, yExist = false;
for (int i=0; i<size; i++) {
TreeNode tem = queue.poll();
if (tem.val == x) {
xExist = true;
}
if (tem.val == y) {
yExist = true;
}
// x和y不能有同一个父节点
if (tem.left != null && tem.right != null) {
if (tem.left.val == x && tem.right.val == y) {
return false;
}
if (tem.left.val == y && tem.right.val == x) {
return false;
}
}
if (tem.left != null) {
queue.offer(tem.left);
}
if (tem.right != null) {
queue.offer(tem.right);
}
}
if (xExist && yExist) {
return true;
}
}
return false;
}

05 第四种解法

借助递归,一个递归方法求深度,一个递归方法找父节点,最后判断深度是否相同且父节点不同。

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/ public boolean isCousins4(TreeNode root, int x, int y) {
return getDepth(root, x, 0) == getDepth(root, y, 0) &&
findParent(root, x) != findParent(root, y);
} public int getDepth(TreeNode root, int num, int depth){
if (root == null) {
return 0;
}
if (root.val == num) {
return depth;
}
int left = getDepth(root.left, num, depth+1);
int right = getDepth(root.right, num, depth+1);
return Math.max(left, right);
} public int findParent(TreeNode root, int num) {
if (root == null) {
return 0;
}
if (root.left != null && root.left.val == num) {
return root.val;
}
if (root.right != null && root.right.val == num) {
return root.val;
}
int left = findParent(root.left, num);
int right = findParent(root.right, num);
return Math.max(left, right);
}

06 第五种解法

我们也可以只是用一次递归方法,借助全局变量来解。

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/ private int depthX;
private int depthY;
private TreeNode parentX;
private TreeNode parentY; public boolean isCousins5(TreeNode root, int x, int y) {
helper(root, x, y, 0, null);
return depthX == depthY && parentX != parentY;
} public void helper(TreeNode root, int x, int y, int depth, TreeNode parent) {
if (root == null) {
return ;
}
if (root.val == x) {
depthX = depth;
parentX = parent;
} else if (root.val == y) {
depthY = depth;
parentY = parent;
}
helper(root.left, x, y, depth+1, root);
helper(root.right, x, y, depth+1, root);
}

07 第六种解法

我们还可以将第五种解法中找父节点的变量换成int类型,因为节点值唯一,可以直接使用节点值参与判断。

/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/ private int depthX;
private int depthY;
private int parentX;
private int parentY; public boolean isCousins6(TreeNode root, int x, int y) {
helper(root, x, y, 0, 0);
return depthX == depthY && parentX != parentY;
} public void helper(TreeNode root, int x, int y, int depth, int parent) {
if (root == null) {
return ;
}
if (root.val == x) {
depthX = depth;
parentX = parent;
} else if (root.val == y) {
depthY = depth;
parentY = parent;
}
helper(root.left, x, y, depth+1, root.val);
helper(root.right, x, y, depth+1, root.val);
}

08 小结

算法专题目前已连续日更超过七个月,算法题文章241+篇,公众号对话框回复【数据结构与算法】、【算法】、【数据结构】中的任一关键词,获取系列文章合集。

以上就是全部内容,如果大家有什么好的解法思路、建议或者其他问题,可以下方留言交流,点赞、留言、转发就是对我最大的回报和支持!

LeetCode.993-二叉树中的堂兄弟(Cousins in Binary Tree)的更多相关文章

  1. [Swift]LeetCode124. 二叉树中的最大路径和 | Binary Tree Maximum Path Sum

    Given a non-empty binary tree, find the maximum path sum. For this problem, a path is defined as any ...

  2. 二叉树中的最大路径和 · Binary Tree Maximum Path Sum

    [抄题]: 给出一棵二叉树,寻找一条路径使其路径和最大,路径可以在任一节点中开始和结束(路径和为两个节点之间所在路径上的节点权值之和) [思维问题]: 不会写分合法 [一句话思路]: 用两次分治:ro ...

  3. LeetCode 103. 二叉树的锯齿形层次遍历(Binary Tree Zigzag Level Order Traversal)

    103. 二叉树的锯齿形层次遍历 103. Binary Tree Zigzag Level Order Traversal 题目描述 给定一个二叉树,返回其节点值的锯齿形层次遍历.(即先从左往右,再 ...

  4. LeetCode 104. 二叉树的最大深度(Maximum Depth of Binary Tree)

    104. 二叉树的最大深度 104. Maximum Depth of Binary Tree 题目描述 给定一个二叉树,找出其最大深度. 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数. 说 ...

  5. LeetCode 145. 二叉树的后序遍历(Binary Tree Postorder Traversal)

    题目描述 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 解题思路 后 ...

  6. LeetCode 114. 二叉树展开为链表(Flatten Binary Tree to Linked List)

    题目描述 给定一个二叉树,原地将它展开为链表. 例如,给定二叉树 1 / \ 2 5 / \ \ 3 4 6 将其展开为: 1 \ 2 \ 3 \ 4 \ 5 \ 6 解题思路 二叉树转化为链表的基本 ...

  7. 【LeetCode】993. Cousins in Binary Tree 解题报告(C++ & python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 DFS BFS 日期 题目地址:https://le ...

  8. LeetCode 993. Cousins in Binary Tree(判断结点是否为Cousin)

    993. Cousins in Binary Tree In a binary tree, the root node is at depth 0, and children of each dept ...

  9. 【Leetcode_easy】993. Cousins in Binary Tree

    problem 993. Cousins in Binary Tree 参考 1. Leetcode_easy_993. Cousins in Binary Tree; 完

随机推荐

  1. [易学易懂系列|rustlang语言|零基础|快速入门|(14)|Impls & Traits实现与特征]

    [易学易懂系列|rustlang语言|零基础|快速入门|(14)] 有意思的基础知识 Impls & Traits实现与特征 我之前说到的struct结构体,其实就类似于面向对象语言中的类cl ...

  2. 面试题:Dubbo中zookeeper做注册中心,如果注册中心集群全都挂掉,发布者和订阅者之间还能通信么?

    1.[提供者]在[启动]时,向注册中心zk [注册]自己提供的服务. 2.[消费者]在[启动]时,向注册中心zk [订阅]自己所需的服务.   可以的,消费者在启动时,消费者会从zk拉取注册的生产者的 ...

  3. springMVC中使用 JSR-303验证器( Validation 接口 )

    在pom.xml,添加validator验证器的依赖 <dependency> <groupId>org.hibernate</groupId> <artif ...

  4. ES使用中的总结整理

    最近项目中使用了ES搜索,开始时自己搭建了ES环境做测试,后面申请了公司的云平台应用, 对接ES的过程中颇具波折,遇到了很多问题,在这里统一整理记录下: 1,ES的9200 及 9300端口说明 92 ...

  5. Travis CI eval ./gradlew assemble 错误

    问题 在进行 Travis CI 进行集成编译的时候出现错误. <-------------> 0% WAITINGThe command "eval ./gradlew ass ...

  6. C语言博客作业04数组

    0.展示PTA总分 1.本章学习总结 1.1 学习内容总结 1.int a[10];为定义数组,表示数组有10个数 2.数组的下标都是从0开始,到n-1结束 3.数组里元素的个数不能大于数组的长度 4 ...

  7. Unity3D_(API)Quaternion四元数中的Quaternion.LookRotation()

    四元数百度百科: 传送门 四元数官方文档: 传送门 欧拉旋转.四元数.矩阵旋转之间的差异: 传送门 四元数转换为欧拉角eulerAngles 官方文档: 传送门 欧拉角转换为四元数Euler 官方文档 ...

  8. win7,win10 系统上搭建testlink1.9.18环境实操步骤

    Windows7,10系统上安装TestLink1.9.18(基于xampp) 写于:2018.11.28 二次排版微调:2019.01.01 如遇本文资料缺失,可点击百度网盘查看原始资料. 链接:h ...

  9. 揭开HTTPS的神秘面纱

    摘自:https://www.cnblogs.com/hujingnb/p/11789728.html 揭开HTTPS的神秘面纱   在说HTTP前,一定要先介绍一下HTTP,这家伙应该不用过多说明了 ...

  10. HTMLHint 配置文件

    HTMLHint 工具可以对 HTML 代码做静态代码检查,从而保证 HTML 代码的规范和质量.HTMLHint 工具内置 23 条规则,建议在 .htmlhintrc 配置文件中将规则尽可能都打开 ...