【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元
题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节。
邻接矩阵是可以带权值的。求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵。而所谓变元矩阵树实际上就是把度数矩阵和邻接矩阵带权化,也就是度数矩阵变成该点连接的所有边的权值和,邻接矩阵变成边权矩阵,剩下的依然是求一个行列式。变元矩阵树求的是所有可能生成树的边权之积。
值得注意的点:
交换两行,行列式取反。在\(double\)存矩阵的时候可以最后取对角线乘积的绝对值,但如果答案要取膜就需要套上一个辗转相除来解这个矩阵,这时就要在交换行时更新答案,对答案取反处理。
求行列式的时候要随便去掉一行和一列,比如去掉最后一行和最后一列就可以。可以传一个\(n-1\)进去避免写错。
推式子也很重要。矩阵树定理维护的东西是可以转化为一个式子的,有时候要把它抽象出来。
#include <bits/stdc++.h>
using namespace std;
const int N = 50;
const double eps = 1e-8;
int n; double k = 1, p[N][N], mat[N][N];
double gauss (int n) {
double ret = 1;
for (int i = 1; i <= n; ++i) {
int besti = i;
for (int j = i; j <= n; ++j) {
if (fabs (mat[besti][i]) < fabs (mat[j][i])) {
besti = j;
}
}
if (i != besti) {
ret = -ret;
swap (mat[i], mat[besti]);
}
for (int j = i + 1; j <= n; ++j) {
if (fabs (mat[j][i]) > eps) {
double d = mat[j][i] / mat[i][i];
for (int k = i; k <= n; ++k) {
mat[j][k] -= mat[i][k] * d;
}
}
}
ret *= mat[i][i];
}
return ret;
}
int main () {
cin >> n;
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= n; ++j) {
cin >> p[i][j];
if (i != j) {
p[i][j] = max (p[i][j], 0.0 + eps);
p[i][j] = min (p[i][j], 1.0 - eps);
if (i < j) k *= (1 - p[i][j]);
mat[i][j] -= p[i][j] / (1.0 - p[i][j]);
}
}
}
for (int i = 1; i <= n; ++i) {
double res = 0.0;
for (int j = 1; j <= n; ++j) if (i != j) {
res -= mat[i][j];
}
mat[i][i] = res;
}
// cout << k << endl;;
cout << k * gauss (n - 1) << endl;
}
【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元的更多相关文章
- BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元
BZOJ_3503_[Cqoi2014]和谐矩阵_高斯消元 题意: 我们称一个由0和1组成的矩阵是和谐的,当且仅当每个元素都有偶数个相邻的1.一个元素相邻的元素包括它本身,及他上下左右的4个元素(如果 ...
- 【bzoj2115】[Wc2011] Xor DFS树+高斯消元求线性基
题目描述 输入 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 Di的无向边. 图 ...
- 【bzoj4184】shallot 线段树+高斯消元动态维护线性基
题目描述 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且 让小葱从自己手中的小 ...
- P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元
传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include ...
- BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)
原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...
- bzoj 1444 AC自动机 + 矩阵乘法 | 高斯消元
恶补了一下AC自动机,花了一天时间终于全部搞明白了. 思路:将每个人的串加入AC自动机,在AC自动机生成的状态图上建边,注意单词末尾的节点只能转移到自己概率为1, 然后将矩阵自乘几十次后误差就很小了, ...
- bzoj 3503: [Cqoi2014]和谐矩阵【高斯消元】
如果确定了第一行,那么可以推出来整个矩阵,矩阵合法的条件是n+1行全是0 所以推出来n+1行和1行的关系,然后用异或高斯消元来解即可 #include<iostream> #include ...
- Broken robot CodeForces - 24D (三对角矩阵简化高斯消元+概率dp)
题意: 有一个N行M列的矩阵,机器人最初位于第i行和第j列.然后,机器人可以在每一步都转到另一个单元.目的是转到最底部(第N个)行.机器人可以停留在当前单元格处,向左移动,向右移动或移动到当前位置下方 ...
- hihocoder 第五十二周 高斯消元·二【高斯消元解异或方程 难点【模板】】
题目地址:http://hihocoder.com/contest/hiho57/problem/1 输入 第1..5行:1个长度为6的字符串,表示该行的格子状态,1表示该格子是亮着的,0表示该格子是 ...
- BZOJ 2466: [中山市选2009]树( 高斯消元 )
高斯消元解异或方程组...然后对自由元进行暴搜.树形dp应该也是可以的... ------------------------------------------------------------- ...
随机推荐
- collections(python常用内建模块)
文章来源:https://www.liaoxuefeng.com/wiki/897692888725344/973805065315456 collections collections是Python ...
- SolidWorks学习笔记7 镜像,阵列
镜像 将特征,面,实体相对于一个平面来复制.修改原来的特征,镜像特征随之改变 阵列 线性阵列 , 在左侧,先激活要阵列的特征,然后点击小柱 然后选择方向1和方向2,该方向的阵列距离和数量(一般使用边线 ...
- ipcs查看消息队列命令
修改消息队列大小: root:用户: /etc/sysctl.conf kernel.msgmnb =4203520 #kernel.msgmnb =3520 kernel.msgmni = 2878 ...
- Tableau常用函数、功能
Tableau常用函数 创建计算字段: Tableau常用功能
- 第三周课程总结&实验报告一
实验一 Java开发环境与简单Java程序 一.实验目的 熟悉JDK开发环境 熟练掌握结构化程序设计方法 二.实验内容 1.在此处输入标题打印输出所有的"水仙花数",所谓" ...
- CF949E Binary Cards 题解
题面 首先发现:一个数最多会出现1次: 然后深入推出:一个数不会既用它又用它的相反数: 这样就可以依次考虑每一位了: 如果所有的数都不含有这一位,那么就直接把所有的数除以2 如果含有,那么就减去这一位 ...
- POJ - 1815 Friendship (最小点割集)
(点击此处查看原题) 题目分析 题意:有n个人,编号记为1~n,n个人之间可能有人可以互相联系,如果A能和B联系,那么至少满足这两种情况之一:(1)A知道B的电话(2)A可以和C联系,并且C可以和B联 ...
- Python接口开发
一.flask flask是一个python编写的轻量级框架,可以使用它实现一个网站.web服务. 用flask开发接口的流程为: 1.定义一个server server=flask.Flask(__ ...
- MySQL中文正常而mybatis查询出现乱码的解决方案
解决方案是在spring-mvc.xml文件中,加入 <mvc:annotation-driven> <mvc:message-converters> <bean cla ...
- 第五篇 jQuery特效与动画
5.1 show()与hide()方法 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" &quo ...