题目大意:

输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10)。再输入p,代表这位童子兵非常好玩,走路一蹦一跳的。每次他在 i 位置有 p 的概率走一步到 i+1 ,或者 (1-p) 的概率跳一步到 i+2。输入n个数,代表n个地雷的位置(1<=n<=100000000),童子兵初始在1位置,求他安全通过这条道路的概率。

基本思路:

如果k 号位有雷,那么安全通过这个雷只可能是在 k-1 号位选择走两步到 k+1 号位。因此,可以得到如下结论:在第 i 个雷的被处理掉的概率就是从 a[i-1]+1 号位到 a[i] 号位的概率。于是,可以用 1 减去就可以求出安全通过第 i个雷的概率,最后乘起来即可,比较悲剧的是数据很大,所以需要用到矩阵快速幂……

类似斐波那契数列,有ans[i]=p*ans[i-1]+(1-p)*ans[i-2] ,构造矩阵为

代码如下:

#include<cstdio>
#include<cstring>
#include<algorithm> using namespace std; typedef long long ll;
const int inf = 0x3f3f3f3f;
const int maxn = 100000+10;
double f[3][3],base[3][3],tmp[3][3];
double b[3],c[3];
int n,pos[20];
double p;
double solve(int t){ base[0][0]=p;
base[0][1]=1.0-p;
base[1][0]=1;
base[1][1]=0;
f[0][0]=1;
f[0][1]=0;
f[1][0]=0;
f[1][1]=1;
b[0]=1;
b[1]=0;
while(t){
if(t&1){
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
tmp[i][j]=0;
for(int k=0;k<2;k++){
tmp[i][j]+=f[i][k]*base[k][j];
}
}
}
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
f[i][j]=tmp[i][j];
}
}
}
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
tmp[i][j]=0;
for(int k=0;k<2;k++){
tmp[i][j]+=base[i][k]*base[k][j];
}
}
}
for(int i=0;i<2;i++){
for(int j=0;j<2;j++){
base[i][j]=tmp[i][j];
}
}
t>>=1;
}
for(int i=0;i<2;i++){
c[i]=0;
for(int j=0;j<2;j++){
c[i]+=f[i][j]*b[j];
}
}
return c[0];
}
int main(){
while(~scanf("%d%lf",&n,&p)){
for(int i=1;i<=n;i++){
scanf("%d",&pos[i]);
}
pos[0]=0;
sort(pos,pos+n+1);
double ans=1.0;
for(int i=1;i<=n;i++){
ans=ans*(1.0-solve(pos[i]-pos[i-1]-1));
}
printf("%.7lf\n",ans);
}
return 0;
}

  

poj 3744 矩阵快速幂+概率dp的更多相关文章

  1. 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)

    题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...

  2. 矩阵快速幂+概率DP poj 3744

    题意:在一条不满地雷的路上,你现在的起点在1处.在N个点处布有地雷,1<=N<=10.地雷点的坐标范围:[1,100000000]. 每次前进p的概率前进一步,1-p的概率前进1-p步.问 ...

  3. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  4. POJ 3744 Scout YYF I 概率dp+矩阵快速幂

    题目链接: http://poj.org/problem?id=3744 Scout YYF I Time Limit: 1000MSMemory Limit: 65536K 问题描述 YYF is ...

  5. POJ 2778 DNA Sequence ( AC自动机、Trie图、矩阵快速幂、DP )

    题意 : 给出一些病毒串,问你由ATGC构成的长度为 n 且不包含这些病毒串的个数有多少个 分析 : 这题搞了我真特么久啊,首先你需要知道的前置技能包括 AC自动机.构建Trie图.矩阵快速幂,其中矩 ...

  6. BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)

    考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...

  7. 【矩阵快速幂优化DP】【校内测试】

    实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻. 构建矩阵什么的 ...

  8. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

  9. HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

随机推荐

  1. Intellij idea创建javaWeb:实现JSP/Servlet(转)

    转自:https://www.jianshu.com/p/9684e90cf7b5 Intellij idea创建javaWeb:实现JSP/Servlet by_love唯念 关注 2016.12. ...

  2. Jmeter 将正则表达式提取的参数传给全局(跨线程组使用变量)

    一.使用正则表达式提取sessionId 1.在测试计划(跨线程组使用变量)--> 线程组(登录)--> 添加HTTP请求(登录接口) (1)创建测试计划: 勾选独立运行每个线程组(例如在 ...

  3. CSIC_716_20191224【python基础结课作业--仿优酷练习】

    需 求:********管理员界面******** 1 注册 2 登录 3 上传视频 4 删除视频 5 发布公告 ********普通用户界面******** 1 注册 2 登录 3 冲会员 4 查看 ...

  4. Win7 VS2012智能提示显示英文的处理办法

    其原因为.net的语言包没安装成功, 解决方法为 替换自己英文显示的,把C:\Windows\Microsoft.NET\Framework\v2.0.50727\zh-CN 目录的文件,替换到相应的 ...

  5. iOS项目开发中的知识点与问题收集整理②

    1.点击UIButton 无法产生触摸事件    如果在UIImageView中添加了一个按钮,你会发现在默认情况下这个按钮是无法被点击的,需要设置UIImageView的userInteractio ...

  6. boost库:智能指针

    1. C98里的智能指针 std::auto_ptr ,本质上是一个普通的指针,通过地址来访问你一个动态分配的对象,初始化时需要传递一个由new操作符返回的对象地址. std::auto_ptr的析构 ...

  7. 小程序推送消息(Template)

    最近搞小程序模拟推送消息,才发现小程序推送消息接口准备下线. 请注意,小程序模板消息接口将于2020年1月10日下线,开发者可使用订阅消息功能 咱们现在有需求,所以不管下不下,完成再说. 一:”获取a ...

  8. epoll学习

    一.epoll_create #include <sys/epoll.h> int epoll_create(int size); int epoll_create1(int flags) ...

  9. PWM输出,呼吸灯

    一.初始化GPIO 使用PB1,查芯片手册对应TIM3_CH4 GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2 ...

  10. BZOJ 3653: 谈笑风生(主席树)

    传送门 解题思路 首先对于一个\(a\)来说,要求\(b\)和\(c\),那么\(a,b,c\)一定在一条链上.把\(b\)分类讨论,如果\(b\)是\(a\)的祖宗,这个方案数就很好统计了,就是\( ...