题目描述:

\(1<=n,ai<=5*10^5\)

题解:

我是弱智我不会期望线性。

设\(E(a[i])\)表示第i个期望被减的个数。

\(E(a[1])=a[1]\)

不难发现\(E(a[i])(i>1)\)之间互不影响,其实这很难。

考虑固定这两个,它们两个选到的概率一样,选到其它的就无视就好了。

那么只用考虑\(n=2\)的情况,这个直接暴力枚举\(a[1]\)结束时\(a[i]\)有几个,乘个\(1\over 2\)的几次方和组合数,式子如下:

\(=a[i]-\sum_{i=0}^{a[i]-1}C_{a[1]-1+i}^{a[i]-1}*{1\over2}^{a[1]+i}*(a[i]-i)\)

可以用递推的方法依次求出\(a[i]=1,2,3…\)的答案。

时间复杂度:\(O(n+max(a))\)

Code:

#include<bits/stdc++.h>
#define fo(i, x, y) for(int i = x, B = y; i <= B; i ++)
#define ff(i, x, y) for(int i = x, B = y; i < B; i ++)
#define fd(i, x, y) for(int i = x, B = y; i >= B; i --)
#define ll long long
#define pp printf
#define hh pp("\n")
using namespace std; const int mo = 323232323; ll ksm(ll x, ll y) {
ll s = 1;
for(; y; y /= 2, x = x * x % mo)
if(y & 1) s = s * x % mo;
return s;
} const ll ni2 = ksm(2, mo - 2); const int N = 1e6 + 5; int n, a[N]; ll fac[N], nf[N], a2[N]; void build(int n) {
fac[0] = 1; fo(i, 1, n) fac[i] = fac[i - 1] * i % mo;
nf[n] = ksm(fac[n], mo - 2); fd(i, n, 1) nf[i - 1] = nf[i] * i % mo;
a2[0] = 1; fo(i, 1, n) a2[i] = a2[i - 1] * ni2 % mo;
} ll C(int n, int m) {
return fac[n] * nf[m] % mo * nf[n - m] % mo;
} ll f[N], g[N]; int main() {
freopen("b.in", "r", stdin);
freopen("b.out", "w", stdout);
scanf("%d", &n);
fo(i, 1, n) scanf("%d", &a[i]);
build(1e6 + 2);
fo(i, 0, 5e5) {
if(i) f[i] = f[i - 1], g[i] = g[i - 1];
f[i] = (f[i] + a2[a[1] + i] * C(a[1] + i - 1, i)) % mo;
g[i] = (g[i] + a2[a[1] + i] * C(a[1] + i - 1, i) % mo * i) % mo;
}
ll ans = a[1];
fo(i, 2, n) {
ans += a[i];
ans -= (f[a[i] - 1] * a[i] - g[a[i] - 1]) % mo;
}
ans = (ans % mo + mo) % mo;
pp("%lld\n", ans);
}

【NOIP2019模拟2019.9.4】B(期望的线性性)的更多相关文章

  1. [JZOJ6340] 【NOIP2019模拟2019.9.4】B

    题目 题目大意 给你个非负整数数列\(a\),每次等概率选择大于零的\(a_i\),使其减\(1\). 问\(a_1\)被减到\(0\)的时候期望经过多少次操作. 思考历程 对于这题的暴力做法,显然可 ...

  2. bzoj1415[NOI2005]聪聪和可可-期望的线性性

    这道题之前我写过一个巨逗比的写法(传送门:http://www.cnblogs.com/liu-runda/p/6220381.html) 当时的原因是这道题可以抽象出和"绿豆蛙的归宿&qu ...

  3. 浅谈期望的线性性(可加性)【CodeForces280c】【bzoj3036】【bzoj3143】

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=63399955 向大(hei)佬(e)势力学(di ...

  4. 6424. 【NOIP2019模拟2019.11.13】我的订书机之恋

    题目描述 Description Input Output Sample Input 见下载 Sample Output 见下载 Data Constraint 题解 lj题卡线段树 求出每个右端点往 ...

  5. 6392. 【NOIP2019模拟2019.10.26】僵尸

    题目描述 题解 吼题但题解怎么这么迷 考虑一种和题解不同的做法(理解) 先把僵尸离散化,h相同的钦(ying)点一个大小 (可以发现这样每种情况只会被算正好一次) 计算完全被占领的方案,然后1-方案/ ...

  6. 6389. 【NOIP2019模拟2019.10.26】小w学图论

    题目描述 题解 之前做过一次 假设图建好了,设g[i]表示i->j(i<j)的个数 那么ans=∏(n-g[i]),因为连出去的必定会构成一个完全图,颜色互不相同 从n~1染色,点i的方案 ...

  7. 6377. 【NOIP2019模拟2019.10.05】幽曲[埋骨于弘川]

    题目描述 题解 随便bb 详细题解见 https://www.cnblogs.com/coldchair/p/11624979.html https://blog.csdn.net/alan_cty/ ...

  8. 6364. 【NOIP2019模拟2019.9.20】养马

    题目描述 题解 一种显然的水法:max(0,-(点权-边权之和*2)) 这样会挂是因为在中途体力值可能会更小,所以考虑求走完每棵子树所需的至少体力值 考虑从子树往上推求出当前点的答案 设每棵子树从根往 ...

  9. 6362. 【NOIP2019模拟2019.9.18】数星星

    题目描述 题解 一种好想/好写/跑得比**记者还快的做法: 对所有询问排序,按照R递增的顺序来处理 维护每个点最后一次被覆盖的时间,显然当前右端点为R时的答案为所有时间≥L的点的权值之和 LCT随便覆 ...

随机推荐

  1. 推荐五个java基础学习网站,小白必备

    不知道去哪找java基础资料?推荐几个学习网站,小白必备 Java经过20多年的发展,仍然是世界上最受欢迎的编程语言之一,有无限多种方法使用Java.拥有庞大的客户群.并且java应用范围很广,基本只 ...

  2. 贾扬清谈大数据&AI发展的新挑战和新机遇

    摘要:2019云栖大会大数据&AI专场,阿里巴巴高级研究员贾扬清为我们带来<大数据AI发展的新机遇和新挑战>的分享.本文主要从人工智能的概念开始讲起,谈及了深度学习的发展和模型训练 ...

  3. Python--多态与多态性、绑定方法与非绑定方法

    多态与多态性 多态 多态指的是一类事物有多种形态,(一个抽象类有多个子类,因而多态的概念依赖于继承) 1. 序列类型有多种形态:字符串,列表,元组. s='hello' l=[,,] t=('a',' ...

  4. REF游标

    ----4.7 ref游标(loop循环) /*** 怎么使用  REF游标 ?  ①声明REF 游标类型,确定REF 游标类型:   ⑴强类型REF游标:指定retrun type,REF 游标变量 ...

  5. 微信小程序常用API组件开发

    关于小程序 张小龙定义小程序: 1.不需要下载安装即可使用: 2.用完即走,不用关心是否安装太多应用: 3.应用无处不在,随时可用. 特点: 1.适合业务逻辑简单的应用: 2,.适合低频应用: 3.适 ...

  6. 【Flutter学习】可滚动组件之滚动监听及控制

    一,概述 ScrollController可以用来控制可滚动widget的滚动位置 二,ScrollController 构造函数 ScrollController({ double initialS ...

  7. 数组转xls格式的excel文件&数据转csv格式的excle

    /** * 数组转xls格式的excel文件 * @param array $data 需要生成excel文件的数组 * @param string $filename 生成的excel文件名 * 示 ...

  8. 团队冲刺DAY3

    DESUtil.java是包含加密解密抽象类的Java文件 DES全称为Data Encryption Standard,即数据加密标准,是一种使用密钥加密的块算法,1977年被美国联邦政府的国家标准 ...

  9. os模块方法

    OS 对象方法: 提供了处理文件及目录的一系列方法 os.rename(current_file_name, new_file_name) 重命名 os.remove(file_name) 删除文件 ...

  10. Tomcat_shutdown

    @echo off echo 执行开始时间 date/t time/t echo *********************************************** echo 正在关闭To ...