题目链接

题意 : 

给定长度为n的数组a,定义一次操作为:

1. 算出长度为n的数组s,使得si= (a[1] + a[2] + ... + a[i]) mod 1,000,000,007;

2. 执行a = s;

现在问k次操作以后a长什么样。

分析 :

这种不断求前缀和的操作、可以考虑构造操作矩阵、最后矩阵快速幂求答案

设 dp[k][i] 为第 k 次操作、第 i 个数的值

则可以得到递推式

dp[k][1] = dp[k-1][1]

dp[k][2] = dp[k-1][2] + dp[k][1]

dp[k][3] = dp[k-1][3] + dp[k][2]

...

dp[k][n] = dp[k-1][n] + dp[k][n-1]

然后你会发现这个东西可以用矩阵乘法来替换

则可以构造一个下三角矩阵 ( 举 n = 4 例子 )

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

记为 A

则有

dp[k-1][1]                               dp[k][1]

dp[k-1][2]                               dp[k][2]

dp[k-1][3]                               dp[k][3]

……                *  A   =           ……

则做 k 次前缀和操作、就是乘 A^k

可是这里 n 太大了、进行矩阵乘法的话复杂度过不去

考虑打表找规律

最后你可以发现 A^k 的矩阵和杨辉三角 ( 即组合数 ) 有蜜汁规律

最后矩阵可以变成

C(k, k)

C(k+1, k)      C(k, k)

C(k+2, k)      C(k+1, k)      C(k, k)

C(k+3, k)      C(k+2, k)      C(k+1, k)     C(k, k)

......

根据组合数公式 C(n, m) = C(n, n-m)

C(k, 0)

C(k+1, 1)      C(k, 0)

C(k+2, 2)      C(k+1, 1)      C(k, 0)

C(k+3, 3)      C(k+2, 2)      C(k+1, 1)     C(k, 0)

......

所以只要对于给定的 k 求解所有的 C(k, 0) 、C(k+1, 1) ..... C(k+n, n)

就能快速构造出这个矩阵

最后进行矩阵乘法就是答案

注意特判 k == 0 的情况

#include<bits/stdc++.h>
#define LL long long
#define ULL unsigned long long

#define scl(i) scanf("%lld", &i)
#define scll(i, j) scanf("%lld %lld", &i, &j)
#define sclll(i, j, k) scanf("%lld %lld %lld", &i, &j, &k)
#define scllll(i, j, k, l) scanf("%lld %lld %lld %lld", &i, &j, &k, &l)

#define scs(i) scanf("%s", i)
#define sci(i) scanf("%d", &i)
#define scd(i) scanf("%lf", &i)
#define scIl(i) scanf("%I64d", &i)
#define scii(i, j) scanf("%d %d", &i, &j)
#define scdd(i, j) scanf("%lf %lf", &i, &j)
#define scIll(i, j) scanf("%I64d %I64d", &i, &j)
#define sciii(i, j, k) scanf("%d %d %d", &i, &j, &k)
#define scddd(i, j, k) scanf("%lf %lf %lf", &i, &j, &k)
#define scIlll(i, j, k) scanf("%I64d %I64d %I64d", &i, &j, &k)
#define sciiii(i, j, k, l) scanf("%d %d %d %d", &i, &j, &k, &l)
#define scdddd(i, j, k, l) scanf("%lf %lf %lf %lf", &i, &j, &k, &l)
#define scIllll(i, j, k, l) scanf("%I64d %I64d %I64d %I64d", &i, &j, &k, &l)

#define lson l, m, rt<<1
#define rson m+1, r, rt<<1|1
#define lowbit(i) (i & (-i))
#define mem(i, j) memset(i, j, sizeof(i))

#define fir first
#define sec second
#define VI vector<int>
#define ins(i) insert(i)
#define pb(i) push_back(i)
#define pii pair<int, int>
#define VL vector<long long>
#define mk(i, j) make_pair(i, j)
#define all(i) i.begin(), i.end()
#define pll pair<long long, long long>

#define _TIME 0
#define _INPUT 0
#define _OUTPUT 0
clock_t START, END;
void __stTIME();
void __enTIME();
void __IOPUT();
using namespace std;
;
;

LL arr[maxn];
LL A[maxn][maxn];
LL Comb[maxn];
LL inv[maxn];

inline void inv_init()
{
    inv[] = inv[] = ;
    ; i<maxn; i++)
        inv[i] = (LL)(mod - mod / i) * inv[mod % i] % mod;
}

int main(void){__stTIME();__IOPUT();

    inv_init();

    int n; sci(n);
    LL k; scl(k);

    ){
        ; i<=n; i++) scl(arr[i]);
        ; i<=n; i++) printf("%lld ", arr[i]);
        puts("");
        ;
    }

    k--;

    Comb[] = 1LL;
    ; i<=n; i++){
        Comb[i] = Comb[i-]%mod;
        Comb[i] = ( Comb[i] * (k + i)%mod )%mod;
        Comb[i] = ( Comb[i] * inv[i]%mod )%mod;
    }

    ; i<=n; i++) scl(arr[i]);
    ; i<=n; i++){
        ; j<=i; j++){
            A[i][j] = Comb[i-j];
        }
    }

//    for(int i=1; i<=n; i++,puts(""))
//        for(int j=1; j<=n; j++)
//            printf("%lld ", A[i][j]);

    ; i<=n; i++){
        LL ans = ;
        ; j<=n; j++)
            ans = ((ans + (A[i][j] * arr[j])%mod + mod)%mod)%mod;
        printf("%lld", ans%mod);
        if(i != n) putchar(' ');
    }puts("");

__enTIME();;}

void __stTIME()
{
    #if _TIME
        START = clock();
    #endif
}

void __enTIME()
{
    #if _TIME
        END = clock();
        cerr<<"execute time = "<<(double)(END-START)/CLOCKS_PER_SEC<<endl;
    #endif
}

void __IOPUT()
{
    #if _INPUT
        freopen("in.txt", "r", stdin);
    #endif
    #if _OUTPUT
        freopen("out.txt", "w", stdout);
    #endif
}

Nowcoder 练习赛 17 C 操作数 ( k次前缀和、矩阵快速幂打表找规律、组合数 )的更多相关文章

  1. Nowcoder 北师校赛 B 外挂使用拒绝 ( k次前缀和、矩阵快速幂打表找规律、组合数 )

    题目链接 题意 : 中文题.点链接 分析 : 有道题是问你不断求前缀和后的结果 Click here 这道题问的是逆过程 分析方法雷同.可参考 Click here ----------------- ...

  2. poj3613Cow Relays——k边最短路(矩阵快速幂)

    题目:http://poj.org/problem?id=3613 题意就是求从起点到终点的一条恰好经过k条边的最短路: floyd+矩阵快速幂,矩阵中的第i行第j列表示从i到j的最短路,矩阵本身代表 ...

  3. “盛大游戏杯”第15届上海大学程序设计联赛夏季赛暨上海高校金马五校赛题解&&源码【A,水,B,水,C,水,D,快速幂,E,优先队列,F,暴力,G,贪心+排序,H,STL乱搞,I,尼姆博弈,J,差分dp,K,二分+排序,L,矩阵快速幂,M,线段树区间更新+Lazy思想,N,超级快速幂+扩展欧里几德,O,BFS】

    黑白图像直方图 发布时间: 2017年7月9日 18:30   最后更新: 2017年7月10日 21:08   时间限制: 1000ms   内存限制: 128M 描述 在一个矩形的灰度图像上,每个 ...

  4. POJ --- 3613 (K步最短路+矩阵快速幂+floyd)

    Cow Relays   Description For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided ...

  5. hdu 1588 求f(b) +f(k+b) +f(2k+b) +f((n-1)k +b) 之和 (矩阵快速幂)

    g(i)=k*i+b; 0<=i<nf(0)=0f(1)=1f(n)=f(n-1)+f(n-2) (n>=2)求f(b) +f(k+b) +f(2*k+b) +f((n-1)*k + ...

  6. 牛客练习赛17 C 操作数(组合数+逆元)

    给定长度为n的数组a,定义一次操作为: 1. 算出长度为n的数组s,使得si= (a[1] + a[2] + ... + a[i]) mod 1,000,000,007: 2. 执行a = s: 现在 ...

  7. NowCoder数列(矩阵快速幂变式)

    时间限制 3000 ms 内存限制 32768 KB 代码长度限制 100 KB 题目描述 NowCoder最近在研究一个数列: * F(0) = 7 * F(1) = 11 * F(n) = F(n ...

  8. 2019-ACM-ICPC-沈阳区网络赛-K. Guanguan's Happy water-高斯消元+矩阵快速幂

    2019-ACM-ICPC-沈阳区网络赛-K. Guanguan's Happy water-高斯消元+矩阵快速幂 [Problem Description] 已知前\(2k\)个\(f(i)\),且 ...

  9. Codeforces 954 dijsktra 离散化矩阵快速幂DP 前缀和二分check

    A B C D 给你一个联通图 给定S,T 要求你加一条边使得ST的最短距离不会减少 问你有多少种方法 因为N<=1000 所以N^2枚举边数 迪杰斯特拉两次 求出Sdis 和 Tdis 如果d ...

随机推荐

  1. 2.更新YUM源

    查看本地源 先删除本地所有源 下载源仓库文件,xxx.repo curl -o /etc/yum.repos.d/ali.repo http://mirrors.aliyun.com/repo/Cen ...

  2. java 利用辗除法求两个整数的最大公约数和最小公倍数

    题目:输入两个正整数m和n,求其最大公约数和最小公倍数. 程序分析:利用辗除法. package Studytest; import java.util.Scanner; public class P ...

  3. TCP/IP 物理层卷二 -- 交换技术

    一.概念 交换技术是指各台主机之间.各通信设备之间或者主机和通信设备之间(简单理解:你的PC和我的PC之间.你的PC和我的路由器.路由器之间)为交换信息所采用的的数据格式和交换装置的方式. 二.交换技 ...

  4. 有关于eclipse启动调试时出现EOFexpetion错误的解决办法

    1.打开调试透视窗 2.找到所有断点 3.清空所有断点后再去打断点,再去调试 网上说法:这个问题可能是由于eclipse和tomcat的交互而产生的,在以debug模式启动tomcat时,发生了读取文 ...

  5. CF235A 【LCM Challenge】

    这题好毒瘤啊 (特别是long long的坑,调了半天没调好!!)先将你特判一下小于3的话直接输出就是惹,不是的话就判断一下它能不能被2整除如果不能就直接输出n*(n-1)*(n-2)否则进行枚举枚举 ...

  6. POJ - 1815 Friendship (最小点割集)

    (点击此处查看原题) 题目分析 题意:有n个人,编号记为1~n,n个人之间可能有人可以互相联系,如果A能和B联系,那么至少满足这两种情况之一:(1)A知道B的电话(2)A可以和C联系,并且C可以和B联 ...

  7. 移动端、pc端通用点击复制

    点击复制 function copyArticle(event){ const range = document.createRange(); range.selectNode(document.ge ...

  8. 华为wlan配置流程及相关重要步骤AC配置

    本次介绍是AC+fitAP组网方式的重要步骤. 一.基础配置 1.规划好ac+ap的组网方式和转发方式.(本次以三层旁挂直接转发),规划管理vlan,业务vlan,与AC连接的vlan,以及他们接口的 ...

  9. Python-RabbitMQ-direct(广播模式)

    direct绑定模式的,选择性接收 生产者:direct_publiser.py import pika,sys connection = pika.BlockingConnection(pika.C ...

  10. hdu 6399 City Development

    vjudge 读进来可能会有相同的\(n_i\),不过在相同的\(n_i\)中只有最后一个是有用的,所以其他的要缩起来,缩完后这些\(n\)的数量不会超过19个 可以发现一个城市的答案为所有城市初始权 ...