题目链接

https://www.lydsy.com/JudgeOnline/problem.php?id=2655

题解

据说有一种神仙容斥做法,但我不会。

以及貌似网上大多数人的dp和我的做法都不一样。

下面讲我的做法:

首先由于元素互不相同,那么显然可以先不考虑顺序。

所以要求的就是\(n![x^n]\prod^{m}_{i=1}(1+ix)\) (直接莽上生成函数是不是有点……)

于是发现这个东西和第一类斯特林数生成函数几乎一样,也可以轻易写出递推式\(dp[i][j]=dp[i-1][j]+dp[i-1][j-1]\times i\)

有一个结论是,\(dp[i][j]\)是关于\(i\)的不超过\(2j\)次多项式。

感性理解的话,就是从\(1\)到\(i\)里选\(j\)个,求乘积之和,\(1\)到\(i\)里选\(j\)个一共有\(i\choose j\)种选法,这显然是\(j\)次多项式,再求\(j\)个不超过\(i\)的数的乘积显然也是\(j\)次,那么总共就是\(2j\)次。

于是求出前\(2n\)项,Lagrange插值计算即可。

(所以这其实是一种求第一类斯特林数\(\begin{bmatrix}n\\m\end{bmatrix}\) (\(n-m\)较小)的新方法?)

时间复杂度\(O(n^2)\).

代码

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std; const int N = 1000;
llong fact[N+3],finv[N+3];
llong dp[N+3][N+3];
llong n,m,P; llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);} namespace Lagrange
{
llong ax[N+3],ay[N+3],poly[N+3];
llong aux[N+3],aux2[N+3];
void lagrange(int n)
{
aux[0] = 1ll;
for(int i=0; i<=n; i++)
{
for(int j=i+1; j>0; j--)
{
aux[j] = (aux[j-1]-aux[j]*ax[i]%P+P)%P;
}
aux[0] = P-aux[0]*ax[i]%P;
}
for(int i=0; i<=n; i++)
{
llong coe = 1ll;
for(int j=0; j<=n; j++)
{
if(i==j) continue;
coe = coe*(ax[i]-ax[j]+P)%P;
}
coe = mulinv(coe);
for(int j=0; j<=n+1; j++) aux2[j] = aux[j];
for(int j=n; j>=0; j--)
{
poly[j] = (poly[j]+ay[i]*aux2[j+1]%P*coe)%P;
aux2[j] = (aux2[j]+aux2[j+1]*ax[i])%P;
}
}
}
llong calc(int n,llong x)
{
llong ret = 0ll;
for(int i=n; i>=0; i--)
{
ret = (ret*x+poly[i])%P;
}
return ret;
}
void clear(int n)
{
for(int i=0; i<=n+1; i++) aux[i] = aux2[i] = poly[i] = 0ll;
}
} int main()
{
scanf("%lld%lld%lld",&m,&n,&P);
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
dp[0][0] = 1ll;
for(int i=1; i<=n+n; i++)
{
dp[i][0] = 1ll;
for(int j=1; j<=i; j++)
{
dp[i][j] = (dp[i-1][j]+dp[i-1][j-1]*i)%P;
}
}
for(int i=0; i<=n+n; i++)
{
Lagrange::ax[i] = i;
Lagrange::ay[i] = dp[i][n];
}
Lagrange::lagrange(n+n);
llong ans = Lagrange::calc(n+n,m)*fact[n]%P;
printf("%lld\n",ans);
return 0;
}

BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)的更多相关文章

  1. [ZJOI2010]排列计数 (组合计数/dp)

    [ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...

  2. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  3. bzoj 2655 calc —— 拉格朗日插值

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...

  4. BZOJ 2655: calc(拉格朗日插值)

    传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...

  5. 【BZOJ2655】calc DP 数学 拉格朗日插值

    题目大意 ​ 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: ​ 长度为给定的\(n\). ​ \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. ​ \(a_1, ...

  6. [BZOJ 2655]calc

    Description 题库链接 给出 \(A,n,p\) ,让你在模 \(p\) 意义下求所有序列 \(a\) 满足"长度为 \(n\) 且 \(a_i\in[1,A]\) ,并且对于 \ ...

  7. bzoj 1004 Cards 组合计数

    这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...

  8. BZOJ1079 [SCOI2008]着色方案[组合计数DP]

    $有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体 ...

  9. bzoj 2655: calc [容斥原理 伯努利数]

    2655: calc 题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和 clj的题 一下子想到容斥,一开始从普通容 ...

随机推荐

  1. Luogu P1600[NOIP2016]day1 T2天天爱跑步

    号称是noip2016最恶心的题 基本上用了一天来搞明白+给sy讲明白(可能还没讲明白 具体思路是真的不想写了(快吐了 如果要看,参见洛谷P1600 天天爱跑步--题解 虽然这样不好但我真的不想写了 ...

  2. Luogu P2617 Dynamic Rankings(整体二分)

    题目 动态区间第K小模板题. 一个非常可行的办法是BIT套动态开点权值SegTree,但是它跑的实在太慢了. 然后由于这题并没有强制在线,所以我们可以使用整体二分来吊打树套树. 当然如果强制在线的话就 ...

  3. windows下生成zlib1.dll

    一.原料: VC zlib-1.2.3-src.zip 二.解压zlib-1.2.3-src.zip,用VC打开工作空间 src/zlib/1.2.3/zlib-1.2.3/projects/visu ...

  4. Java排序--排序算法(内排序)

    常用内排序算法 我们通常所说的排序算法往往指的是内部排序算法,即需要排序的数据在计算机内存中完成整个排序的过程,当数据率超大或排序较为繁琐时常借助于计算机的硬盘对大数据进行排序工作,称之为外部排序算法 ...

  5. 关于redis的几件小事(十)redis cluster模式

    redis cluster是redis提供的集群模式. 1.redis cluster的架构 ①可以有多个master node,每个master node 都可以挂载多个slave node. ②读 ...

  6. Maven之私服配置

    一.配置从私服下载 从私服下载主要是将 central 库的下载地址从https://repo1.maven.org/maven2/修改为私服地址,比如http://localhost:8081/re ...

  7. 检查linux是否安装java、tomcat、mysql

    linux下,查看安装软件 1.linux下的java Java -version 如果出现java版本,证明java安装成功. 2.linux下的tomcat 2.1.检查linux是否安装tomc ...

  8. C语言typedef详解

    原文链接 C语言允许用户使用 typedef 关键字来定义自己习惯的数据类型名称,来替代系统默认的基本类型名称.数组类型名称.指针类型名称与用户自定义的结构型名称.共用型名称.枚举型名称等.一旦用户在 ...

  9. 多线程编程-- part5.1 互斥锁ReentrantLock

    ReentrantLock简介 Reentrantlock是一个可重入的互斥锁,又被称为独占锁. Reentrantlock:分为公平锁和非公平锁,它们的区别体现在获取锁的机制上是否公平.“锁”是为了 ...

  10. Linux上安装postgres 10.5

    由于接触了华为的elk大数据平台,里面封装的是postgres ,就想着安装一下,熟悉一下postgres数据. 安装包下载:https://www.postgresql.org/ftp/source ...