BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)
题目链接
https://www.lydsy.com/JudgeOnline/problem.php?id=2655
题解
据说有一种神仙容斥做法,但我不会。
以及貌似网上大多数人的dp和我的做法都不一样。
下面讲我的做法:
首先由于元素互不相同,那么显然可以先不考虑顺序。
所以要求的就是\(n![x^n]\prod^{m}_{i=1}(1+ix)\) (直接莽上生成函数是不是有点……)
于是发现这个东西和第一类斯特林数生成函数几乎一样,也可以轻易写出递推式\(dp[i][j]=dp[i-1][j]+dp[i-1][j-1]\times i\)
有一个结论是,\(dp[i][j]\)是关于\(i\)的不超过\(2j\)次多项式。
感性理解的话,就是从\(1\)到\(i\)里选\(j\)个,求乘积之和,\(1\)到\(i\)里选\(j\)个一共有\(i\choose j\)种选法,这显然是\(j\)次多项式,再求\(j\)个不超过\(i\)的数的乘积显然也是\(j\)次,那么总共就是\(2j\)次。
于是求出前\(2n\)项,Lagrange插值计算即可。
(所以这其实是一种求第一类斯特林数\(\begin{bmatrix}n\\m\end{bmatrix}\) (\(n-m\)较小)的新方法?)
时间复杂度\(O(n^2)\).
代码
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cassert>
#include<iostream>
#define llong long long
using namespace std;
const int N = 1000;
llong fact[N+3],finv[N+3];
llong dp[N+3][N+3];
llong n,m,P;
llong quickpow(llong x,llong y)
{
llong cur = x,ret = 1ll;
for(int i=0; y; i++)
{
if(y&(1ll<<i)) {y-=(1ll<<i); ret = ret*cur%P;}
cur = cur*cur%P;
}
return ret;
}
llong mulinv(llong x) {return quickpow(x,P-2);}
namespace Lagrange
{
llong ax[N+3],ay[N+3],poly[N+3];
llong aux[N+3],aux2[N+3];
void lagrange(int n)
{
aux[0] = 1ll;
for(int i=0; i<=n; i++)
{
for(int j=i+1; j>0; j--)
{
aux[j] = (aux[j-1]-aux[j]*ax[i]%P+P)%P;
}
aux[0] = P-aux[0]*ax[i]%P;
}
for(int i=0; i<=n; i++)
{
llong coe = 1ll;
for(int j=0; j<=n; j++)
{
if(i==j) continue;
coe = coe*(ax[i]-ax[j]+P)%P;
}
coe = mulinv(coe);
for(int j=0; j<=n+1; j++) aux2[j] = aux[j];
for(int j=n; j>=0; j--)
{
poly[j] = (poly[j]+ay[i]*aux2[j+1]%P*coe)%P;
aux2[j] = (aux2[j]+aux2[j+1]*ax[i])%P;
}
}
}
llong calc(int n,llong x)
{
llong ret = 0ll;
for(int i=n; i>=0; i--)
{
ret = (ret*x+poly[i])%P;
}
return ret;
}
void clear(int n)
{
for(int i=0; i<=n+1; i++) aux[i] = aux2[i] = poly[i] = 0ll;
}
}
int main()
{
scanf("%lld%lld%lld",&m,&n,&P);
fact[0] = 1ll; for(int i=1; i<=N; i++) fact[i] = fact[i-1]*i%P;
finv[N] = quickpow(fact[N],P-2); for(int i=N-1; i>=0; i--) finv[i] = finv[i+1]*(i+1)%P;
dp[0][0] = 1ll;
for(int i=1; i<=n+n; i++)
{
dp[i][0] = 1ll;
for(int j=1; j<=i; j++)
{
dp[i][j] = (dp[i-1][j]+dp[i-1][j-1]*i)%P;
}
}
for(int i=0; i<=n+n; i++)
{
Lagrange::ax[i] = i;
Lagrange::ay[i] = dp[i][n];
}
Lagrange::lagrange(n+n);
llong ans = Lagrange::calc(n+n,m)*fact[n]%P;
printf("%lld\n",ans);
return 0;
}
BZOJ 2655 calc (组合计数、DP、多项式、拉格朗日插值)的更多相关文章
- [ZJOI2010]排列计数 (组合计数/dp)
[ZJOI2010]排列计数 题目描述 称一个1,2,...,N的排列P1,P2...,Pn是Magic的,当且仅当2<=i<=N时,Pi>Pi/2. 计算1,2,...N的排列中有 ...
- BZOJ.2655.calc(DP/容斥 拉格朗日插值)
BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...
- bzoj 2655 calc —— 拉格朗日插值
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2655 先设 f[i][j] 表示长度为 i 的序列,范围是 1~j 的答案: 则 f[i][ ...
- BZOJ 2655: calc(拉格朗日插值)
传送门 解题思路 首先比较容易能想到\(dp\),设\(f[i][j]\)表示前\(j\)个数,每个数\(<=i\)的答案,那么有转移方程:\(f[i][j]=f[i-1][j-1]*i*j+f ...
- 【BZOJ2655】calc DP 数学 拉格朗日插值
题目大意 一个序列\(a_1,\ldots,a_n\)是合法的,当且仅当: 长度为给定的\(n\). \(a_1,\ldots,a_n\)都是\([1,m]\)中的整数. \(a_1, ...
- [BZOJ 2655]calc
Description 题库链接 给出 \(A,n,p\) ,让你在模 \(p\) 意义下求所有序列 \(a\) 满足"长度为 \(n\) 且 \(a_i\in[1,A]\) ,并且对于 \ ...
- bzoj 1004 Cards 组合计数
这道题考察的是组合计数(用Burnside,当然也可以认为是Polya的变形,毕竟Polya是Burnside推导出来的). 这一类问题的本质是计算置换群(A,P)中不动点个数!(所谓不动点,是一个二 ...
- BZOJ1079 [SCOI2008]着色方案[组合计数DP]
$有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体 ...
- bzoj 2655: calc [容斥原理 伯努利数]
2655: calc 题意:长n的序列,每个数\(a_i \in [1,A]\),求所有满足\(a_i\)互不相同的序列的\(\prod_i a_i\)的和 clj的题 一下子想到容斥,一开始从普通容 ...
随机推荐
- Radio stations CodeForces - 762E (cdq分治)
大意: 给定$n$个三元组$(x,r,f)$, 求所有对$(i,j)$, 满足$i<j, |f_i-f_j|\le k, min(r_i,r_j)\ge |x_i-x_j|$ 按$r$降序排, ...
- gitlab操作笔记
基本命令 准备 1. 安装所需命令 sudo yum install curl openssh-server openssh-clients postfix cronie -y2. 安装SSH sud ...
- springboot(二十二)-sharding-jdbc-读写分离
前面我们使用sharding-jdbc配置了分库分表.sharding-jdbc还有个用法,就是实现读写分离. 什么时候需要或者可以使用读写分离? 当我们的项目所使用的数据库查询的访问量,访问频率,及 ...
- 10 Scrapy框架持久化存储
一.基于终端指令的持久化存储 保证parse方法中有可迭代类型对象(通常为列表or字典)的返回,该返回值可以通过终端指令的形式写入指定格式的文件中进行持久化操作. 执行输出指定格式进行存储:将爬取到的 ...
- N4_75条语法
1. コ/ソ/ア/ド体系 -(こ.そ.あ.ど)れ/-(こ.そ.あ.ど)の A:-(こ.そ.あ.ど)れ 接续: 指示代词和场所代词,分近称.中称.远称.疑问称. 意思: 这个,那个,那个,哪个 例:これ ...
- 设置Linux之CentOS7的网络的两种方式动态IP+静态IP
1 动态IP 参考之前的文章 点击进入 2 静态IP vi /etc/sysconfig/network-scripts/ifcfg-ens33 详情配置如下,上面半部分是我之前的动态IP的设置 静态 ...
- 17种常用的JS正则表达式 非负浮点数 非负正数
<input type='text' id='SYS_PAGE_JumpPage' name='SYS_PAGE_JumpPage' size='3' maxlength='5' onkeyup ...
- linux添加开机启动项、登陆启动项、定时启动项、关机执行项等的方法
使用chkconfig命令可以查看在不同启动级别下课自动启动的服务(或是程序),命令格式如下: chkconfig --list 可能输出如下: network 0:off 1:o ...
- vi编辑器中删除文件中所有字符
在命令模式下,将光标移动到文档最上方(使用gg命令),然后输入dG,删除工作区内所有缓存数据. 如果想要删除某行文档以下的内容,将光标移动到文档相应行,然后输入dG即可.
- IO模型(epoll)--详解-01
写在前面 从事服务端开发,少不了要接触网络编程.epoll作为linux下高性能网络服务器的必备技术至关重要,nginx.redis.skynet和大部分游戏服务器都使用到这一多路复用技术. 本文会从 ...