TTTTTTTTTTT POJ 2749 修牛棚 2-Sat + 路径限制 变形
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 7019 | Accepted: 2387 |
Description
Clever John just had another good idea. He first builds two transferring point S1 and S2, and then builds a road connecting S1 and S2 and N roads connecting each barn with S1 or S2, namely every barn will connect with S1 or S2, but not both. So that every pair of barns will be connected by the roads. To make the cows don't spend too much time while dropping around, John wants to minimize the maximum of distances between every pair of barns.
That's not the whole story because there is another troublesome problem. The cows of some barns hate each other, and John can't connect their barns to the same transferring point. The cows of some barns are friends with each other, and John must connect their barns to the same transferring point. What a headache! Now John turns to you for help. Your task is to find a feasible optimal road-building scheme to make the maximum of distances between every pair of barns as short as possible, which means that you must decide which transferring point each barn should connect to.
We have known the coordinates of S1, S2 and the N barns, the pairs of barns in which the cows hate each other, and the pairs of barns in which the cows are friends with each other.
Note that John always builds roads vertically and horizontally, so the length of road between two places is their Manhattan distance. For example, saying two points with coordinates (x1, y1) and (x2, y2), the Manhattan distance between them is |x1 - x2| + |y1 - y2|.
Input
Next line contains 4 integer sx1, sy1, sx2, sy2, which are the coordinates of two different transferring point S1 and S2 respectively.
Each of the following N line contains two integer x and y. They are coordinates of the barns from the first barn to the last one.
Each of the following A lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows hate each other.
The same pair of barns never appears more than once.
Each of the following B lines contains two different integers i and j(1 <= i < j <= N), which represent the i-th and j-th barns in which the cows are friends with each other. The same pair of barns never appears more than once.
You should note that all the coordinates are in the range [-1000000, 1000000].
Output
Sample Input
4 1 1
12750 28546 15361 32055
6706 3887
10754 8166
12668 19380
15788 16059
3 4
2 3
Sample Output
53246 题意:题意:给出n个牛棚、两个特殊点S1,S2的坐标。S1、S2直连。牛棚只能连S1或S2
还有,某些牛棚只能连在同一个S,某些牛棚不能连在同一个S
求使最长的牛棚间距离最小 距离是曼哈顿距离
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <algorithm>
#include <set>
using namespace std;
typedef long long ll;
typedef unsigned long long Ull;
#define MM(a,b) memset(a,b,sizeof(a));
const double eps = 1e-10;
const int inf =0x7f7f7f7f;
const double pi=acos(-1);
const int maxn=100+1000; struct Point{
int x,y;
void read()
{
scanf("%d %d",&x,&y);
}
}p[510];
vector<int> g[2*maxn],G[2*maxn];
stack<int> S;
Point s1,s2;
int n,a,b,u,v,scc_cnt,dfs_clock,pre[2*maxn],sccno[2*maxn],lowlink[2*maxn]; int dis(Point a,Point b)
{
return abs(a.x-b.x)+abs(a.y-b.y);
} void add_edgeG(int u,int v)
{
G[u].push_back(v);
} void add_edge(int u,int v)
{
g[u].push_back(v);
} void build(int mid)
{
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
{
int u=i<<1,v=j<<1;
if(dis(p[i],s1)+dis(s1,p[j])>mid)
{
add_edge(u,v^1);
add_edge(v,u^1);
}
if(dis(p[i],s2)+dis(s2,p[j])>mid)
{
add_edge(u^1,v);
add_edge(v^1,u);
}
if(dis(p[i],s1)+dis(s1,s2)+dis(s2,p[j])>mid)
{
add_edge(u,v);
add_edge(v^1,u^1);
}
if(dis(p[i],s2)+dis(s2,s1)+dis(s1,p[j])>mid)
{
add_edge(u^1,v^1);
add_edge(v,u);
}
}
} void tarjan(int u)
{
pre[u]=lowlink[u]=++dfs_clock;
S.push(u);
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(!pre[v])
{
tarjan(v);
lowlink[u]=min(lowlink[v],lowlink[u]);
}
else if(!sccno[v])
lowlink[u]=min(lowlink[u],pre[v]);
} if(pre[u]==lowlink[u])
{
scc_cnt++;
for(;;)
{
int w=S.top();S.pop();
sccno[w]=scc_cnt;
if(w==u) break;
}
}
} bool find_scc(int mid)
{
for(int i=2;i<=2*n+1;i++) g[i].clear();
for(int u=2;u<=2*n+1;u++)
for(int i=0;i<G[u].size();i++)
g[u].push_back(G[u][i]);
build(mid); MM(lowlink,0);
MM(sccno,0);
MM(pre,0);
scc_cnt=dfs_clock=0;
for(int i=2;i<=2*n+1;i++)
if(!pre[i])
tarjan(i); for(int i=2;i<=2*n;i+=2)
{
if(sccno[i]==sccno[i^1])
return false;
}
return true;
} int main()
{
while(~scanf("%d %d %d",&n,&a,&b))
{
for(int i=2;i<=2*n+1;i++) G[i].clear();
s1.read();
s2.read();
for(int i=1;i<=n;i++) p[i].read(); for(int i=0;i<a;i++)
{
scanf("%d %d",&u,&v);
u<<=1;
v<<=1;
add_edgeG(u,v^1);
add_edgeG(v,u^1);
add_edgeG(u^1,v);
add_edgeG(v^1,u);
} for(int i=0;i<b;i++)
{
scanf("%d %d",&u,&v);
u<<=1;
v<<=1;
add_edgeG(u,v);
add_edgeG(v,u);
add_edgeG(u^1,v^1);
add_edgeG(v^1,u^1);
} int l=-1,r=5*1e6+100;
while(r-l>1)
{
int mid=(l+r)>>1;
if(find_scc(mid))
r=mid;
else l=mid;
}
if(r>5*1e6) printf("-1\n");
else printf("%d\n",r);
}
return 0;
}
分析:与模板题最大的不同就是要求在满足有连接方案存在的情况下,图中存在的最长简单路径尽可能短,处理方式如下:
1.因为是最长路径尽可能短,所以二分最大路径。
2.二分出一个mid值后,将每两个节点之间的四种组合的路径长度与mid比较,从而根据要让所有路径长度
都不能超过mid这一假设条件进行再次连边;
3.因为要多次连边,所以需要设置两个邻接表,一个记录根据喜欢与讨厌的关系保存边,另一个在前一个的基础上加上路径限制
TTTTTTTTTTT POJ 2749 修牛棚 2-Sat + 路径限制 变形的更多相关文章
- POJ 2594 Treasure Exploration(最小路径覆盖变形)
POJ 2594 Treasure Exploration 题目链接 题意:有向无环图,求最少多少条路径能够覆盖整个图,点能够反复走 思路:和普通的最小路径覆盖不同的是,点能够反复走,那么事实上仅仅要 ...
- HDU 1815, POJ 2749 Building roads(2-sat)
HDU 1815, POJ 2749 Building roads pid=1815" target="_blank" style="">题目链 ...
- POJ 3126 Prime Path(素数路径)
POJ 3126 Prime Path(素数路径) Time Limit: 1000MS Memory Limit: 65536K Description - 题目描述 The minister ...
- Java实现 POJ 2749 分解因数(计蒜客)
POJ 2749 分解因数(计蒜客) Description 给出一个正整数a,要求分解成若干个正整数的乘积,即a = a1 * a2 * a3 * - * an,并且1 < a1 <= ...
- poj 2749
Building roads Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6091 Accepted: 2046 De ...
- poj 3020 Antenna Placement(最小路径覆盖 + 构图)
http://poj.org/problem?id=3020 Antenna Placement Time Limit: 1000MS Memory Limit: 65536K Total Sub ...
- poj 2060 Taxi Cab Scheme (最小路径覆盖)
http://poj.org/problem?id=2060 Taxi Cab Scheme Time Limit: 1000MS Memory Limit: 30000K Total Submi ...
- POJ 3216 Repairing Company(最小路径覆盖)
POJ 3216 Repairing Company id=3216">题目链接 题意:有m项任务,每项任务的起始时间,持续时间,和它所在的block已知,且往返每对相邻block之间 ...
- poj 3414 Pots 【BFS+记录路径 】
//yy:昨天看着这题突然有点懵,不知道怎么记录路径,然后交给房教了,,,然后默默去写另一个bfs,想清楚思路后花了半小时写了120+行的代码然后出现奇葩的CE,看完FAQ改了之后又WA了.然后第一次 ...
随机推荐
- Python使用pycharm导入pymysql
file->setting->project->project interperter,双击右侧出现的pip,弹出安装包,搜索pymysql->选择第一个->Instal ...
- 小记--------CDH版本启动cloudera manager UI界面
首先需要启动mysql源数据库 server所在服务器的路径:/opt/cm-5.14.0/etc/cloudera-scm-server 下 查看配置文件: db.properties 查看my ...
- Django在使用Mysql迁移数据库时,会报的错
settings : DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': 'firstproject', ...
- Codeforces 1209D Cow and Snacks
题目大意 有 $n$ 个不同的糖果,从 $1$ 到 $n$ 编号.有 $k$ 个客人.要用糖果招待客人. 对于每个客人,这些糖果中恰有两个是其最爱.第 $i$ 个客人最爱的糖果编号是 $x_i$ 和 ...
- Python 并发网络库
Python 并发网络库 Tornado VS Gevent VS Asyncio Tornado:并发网络库,同时也是一个 web 微框架 Gevent:绿色线程(greenlet)实现并发,猴子补 ...
- JS基础_js编写位置
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- Vue路由守卫之路由独享守卫
路由独立守卫,顾名思义就是这个路由自己的守卫任务,就如同咱们LOL,我们守卫的就是独立一条路,保证我们这条路不要被敌人攻克(当然我们也得打团配合) 在官方定义是这样说的:你可以在路由配置上直接定义 ...
- se37 函数中的异常使用
一种是rase <exceptions> FUNCTION ztest. *"-------------------------------------------------- ...
- Python爬虫之简单爬虫框架实现
简单爬虫框架实现 目录 框架流程 调度器url管理器 网页下载器 网页解析器 数据处理器 具体演示效果 框架流程 调度器 #导入模块 import Url_Manager import parser_ ...
- java多线程ExecutorService
1.new Thread的弊端 执行一个异步任务你还只是如下new Thread吗? new Thread(new Runnable() { @Override public void run() { ...