L2 Regularization是解决Variance(Overfitting)问题的方案之一,在Neural Network领域里通常还有Drop Out, L1 Regularization等。无论哪种方法,其Core Idea是让模型变得更简单,从而平衡对training set完美拟合、以及获得最大的Generalization即归纳能力,从而对未见的数据有最准确的预测。

L2 Regularization改变了Cost function,如果在正则化之前的Cost function为J(ω,X,y),则正则化之后,变为:

对其求梯度,得到:

再做Gradient Descent,ω的更新公式为:

其中α是learning rate,λ是Regularization Parameter,一般二者都取正值,所以可以看到参数矩阵ω是呈减小的趋势。并且,在参数矩阵ω中取值较大的参数,减小得会更快。

L2 Regularization for Neural Nerworks的更多相关文章

  1. 正则化方法:L1和L2 regularization、数据集扩增、dropout

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  2. 正则化方法:L1和L2 regularization、数据集扩增、dropout(转)

    ps:转的.当时主要是看到一个问题是L1 L2之间有何区别,当时对l1与l2的概念有些忘了,就百度了一下.看完这篇文章,看到那个对W减小,网络结构变得不那么复杂的解释之后,满脑子的6666------ ...

  3. L1&L2 Regularization的原理

    L1&L2 Regularization   正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现 ...

  4. L1&L2 Regularization

    正则化方法:防止过拟合,提高泛化能力 在训练数据不够多时,或者overtraining时,常常会导致overfitting(过拟合).其直观的表现如下图所示,随着训练过程的进行,模型复杂度增加,在tr ...

  5. [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization

    About this Course This course will teach you the "magic" of getting deep learning to work ...

  6. Machine Learning 文章导读

    Machine Learning Algorithms Linear Regression and Gradient Descent Local Weighted Regression Algorit ...

  7. Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Regularization)

    声明:所有内容来自coursera,作为个人学习笔记记录在这里. Regularization Welcome to the second assignment of this week. Deep ...

  8. Coursera, Deep Learning 2, Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Course

    Train/Dev/Test set Bias/Variance Regularization  有下面一些regularization的方法. L2 regularation drop out da ...

  9. 吴恩达《深度学习》-课后测验-第二门课 (Improving Deep Neural Networks:Hyperparameter tuning, Regularization and Optimization)-Week 1 - Practical aspects of deep learning(第一周测验 - 深度学习的实践)

    Week 1 Quiz - Practical aspects of deep learning(第一周测验 - 深度学习的实践) \1. If you have 10,000,000 example ...

随机推荐

  1. dp(电梯与楼梯)

    http://codeforces.com/problemset/problem/1249/E E. By Elevator or Stairs? time limit per test 2 seco ...

  2. Keyboarding (bfs+预处理+判重优化)

    # #10030. 「一本通 1.4 练习 2」Keyboarding [题目描述] 给定一个 $r$ 行 $c$ 列的在电视上的"虚拟键盘",通过「上,下,左,右,选择」共 $5 ...

  3. C# System.Web.Caching.Cache类 缓存 各种缓存依赖

    原文:https://www.cnblogs.com/kissdodog/archive/2013/05/07/3064895.html Cache类,是一个用于缓存常用信息的类.HttpRuntim ...

  4. PC端实现浏览器点击分享到QQ好友,空间,微信,微博等

    网上现在比较流行的是JIaThis,但是测试的时候,不能分享给QQ好友,一直卡在输入验证码,以下代码亲测有效,可直接使用 <%@ page language="java" c ...

  5. JavaScript、ES6中的类的继承

    类的继承 extends  connstructor  super 例1: class Father { constructor(){} money(){ console.log("1000 ...

  6. MiniUI学习笔记1-表单控件

    1.输入框样式 class="mini-textbox" //普通输入框 class="mini-password" //密码输入框 class="m ...

  7. linux测试 Sersync 是否正常

    [root@SERSYNC web]# for i in {1..10000};do echo 123456 > /data/web/$i &>/dev/null;do ne [r ...

  8. Spring Data Elasticsearch 用户指南

    https://www.jianshu.com/p/27e1d583aafb 翻译自官方文档英文版,有删减. BioMed Central Development Team version 2.1.3 ...

  9. tf.reshape

    tf.reshape(tensor, shape, name=None) 其中,tensor是向量,或者说矩阵 shape是转换后的向量,或者转换后的矩阵形状 [2,1]转换成二行一列 [2,-1]转 ...

  10. Linux 性能测试工具 sysbench 的安装与简单使用

    文章目录 Linux 性能测试工具 sysbench 的安装与简单使用        一 背景        二 实验环境            2.1 操作系统            2.2 其他配 ...