传送门

考虑如果能确定每个鞋子最终交换到的位置,那么答案容易算出

具体地,如果原位置为 $i$ 的鞋子要交换到 $pos[i]$ 那么最终答案就是 $pos$ 的逆序对数量

如果不懂可以先去写 NOIP2013火柴排队   我的题解也有关于这个的证明

考虑怎么确定最优的方案,容易想到每个鞋子都找离它最近的鞋子匹配,这样是对的

证明(参考博客):

设最终相邻的某两对鞋子 $(a,b) (c,d)$,其中$(a,b)$ 表示这一对鞋子初始的位置为 $a,b$,$(c,d)$ 同理,不妨设 $a<c$ ,

如果 $a<b<c<d$ 那么 $(a,b)(c,d)$ 产生的逆序对数量为 $0$,$(c,d)(a,b)$ 产生的逆序对数量为 $4$

如果 $a<c<b<d$ 那么 $(a,b)(c,d)$ 产生的逆序对数量为 $1$,$(c,d)(a,b)$ 产生的逆序对数量为 $3$

如果 $a<c<d<b$ 那么 $(a,b)(c,a)$ 产生的逆序对数量为 $2$,$(c,d)(a,b)$ 产生的逆序对数量为 $2$

所以如果对于某两对相邻鞋子 $(c,d)(a,b)$ ,且 $a<c$,交换他们不会使方案更劣

所以每次贪心选最近的鞋子匹配即可,具体实现看代码

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<vector>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=4e5+;
int n,n2,a[N],pos[N];
ll ans;
bool vis[N];
vector <int> L[N],R[N];//桶
int t[N];
inline void add(int x,int v) { while(x<=n2) t[x]+=v,x+=x&-x; }
inline int ask(int x) { int res=; while(x) res+=t[x],x-=x&-x; return res; }
int main()
{
n=read(); n2=n*;
for(int i=;i<=n2;i++)
{
a[i]=read();
a[i]< ? L[-a[i]].push_back(i) : R[a[i]].push_back(i);
}
for(int i=;i<=n;i++)
{
int len=L[i].size();
for(int j=;j<len;j++)
{
pos[L[i][j]]=R[i][j];
pos[R[i][j]]=L[i][j];
ans+=L[i][j]>R[i][j];//注意细节
}
}
for(int i=;i<=n2;i++) add(i,);
for(int i=;i<=n2;i++)
{
if(vis[i]) continue;
add(i,-); add(pos[i],-);
vis[i]=vis[pos[i]]=;
ans+=ask(pos[i]);//求在它之后的小于等于它的数量
}
//树状数组维护逆序对数量
printf("%lld\n",ans);
return ;
}

LOJ 3175. 「IOI2019」排列鞋子的更多相关文章

  1. Loj #2554. 「CTSC2018」青蕈领主

    Loj #2554. 「CTSC2018」青蕈领主 题目描述 "也许,我的生命也已经如同风中残烛了吧."小绿如是说. 小绿同学因为微积分这门课,对"连续"这一概 ...

  2. Loj #2719. 「NOI2018」冒泡排序

    Loj #2719. 「NOI2018」冒泡排序 题目描述 最近,小 S 对冒泡排序产生了浓厚的兴趣.为了问题简单,小 S 只研究对 *\(1\) 到 \(n\) 的排列*的冒泡排序. 下面是对冒泡排 ...

  3. Loj #3102. 「JSOI2019」神经网络

    Loj #3102. 「JSOI2019」神经网络 题目背景 火星探险队发现,火星人的思维方式与人类非常不同,是因为他们拥有与人类很不一样的神经网络结构.为了更好地理解火星人的行为模式,JYY 对小镇 ...

  4. Loj #3042. 「ZJOI2019」麻将

    Loj #3042. 「ZJOI2019」麻将 题目描述 九条可怜是一个热爱打麻将的女孩子.因此她出了一道和麻将相关的题目,希望这题不会让你对麻将的热爱消失殆尽. 今天,可怜想要打麻将,但是她的朋友们 ...

  5. Loj #2192. 「SHOI2014」概率充电器

    Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  6. Loj #3096. 「SNOI2019」数论

    Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...

  7. Loj #3093. 「BJOI2019」光线

    Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...

  8. Loj #3089. 「BJOI2019」奥术神杖

    Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...

  9. Loj #2542. 「PKUWC2018」随机游走

    Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...

随机推荐

  1. IDEA maven 配置,运行比较慢,加截本地仓库资源数据

    在 Runner 配置了参数: -DarchetypeCatalog=internal

  2. CentOS7下修改默认网卡名为eth0的两种方法

    前言 大家都知道CentOS7默认的网卡名称是和设备名称是随机的,如果要修改网卡名称以 eth 开头,有两种方式,如下: 第一种方式 这种方式适合在安装操作系统的时候进行设置, 点击 Tab,打开ke ...

  3. mysql Update语句 语法

    mysql Update语句 语法 作用:用于修改表中的数据.广州大理石机械构件 语法:UPDATE 表名称 SET 列名称 = 新值 WHERE 列名称 = 某值 mysql Update语句 示例 ...

  4. mysql ORDER BY语句 语法

    mysql ORDER BY语句 语法 作用:用于对结果集进行排序. 语法:顺序:SELECT * from 表名 ORDER BY 排序的字段名  倒序:SELECT * from 表名 ORDER ...

  5. React-router的基本使用

    1.安装使用 $ npm install -S react-router import { Router, Route, hashHistory } from 'react-router'; rend ...

  6. java 如何实现大文件上传下载(传输)各种格式

    我们平时经常做的是上传文件,上传文件夹与上传文件类似,但也有一些不同之处,这次做了上传文件夹就记录下以备后用. 首先我们需要了解的是上传文件三要素: 1.表单提交方式:post (get方式提交有大小 ...

  7. 洛谷P1982 小朋友的数字——题解

    题目传送 简单地说,这题就是让我们求前i个数的最大子串和和最值. 对于最大子串和,我们可以设一个变量qian,表示以当前元素结尾的最大子串的子串和.若搜索完第i-1个小朋友,现在看到第i个小朋友时,若 ...

  8. SDK使用NinePatch(.9)资源

    .9资源是啥? .9图是一种可以拉伸的图片格式,当你把它用作背景图时,android系统会根据实际情况来拉伸图片资源.比如按钮的背景必须根据上面显示文字的长短作拉伸.NinePatch就是额外包含了一 ...

  9. Flask中的路由配置

    在Flask中也同样有django中的路由配置只不过没有djngo那么严格主要的参数有一下六个记住常用的就可以了 1.endpoint   反向生成url地址标志,默认视图函数名 2.methods ...

  10. 十一、python函数学习

    1.    定义函数 def   函数名(形参): 函数体 return  xxx--------其下面的内容不再执行 ---------------------------------------- ...