[BZOJ 1053] [HAOI 2007] 反素数ant
题目链接:BZOJ 1053
想一想就会发现,题目让求的 1 到 n 中最大的反素数,其实就是 1 到 n 中因数个数最多的数。(当有多于一个的数的因数个数都为最大值时,取最小的一个)
考虑:对于一个整数 n ,如何求 n 的因数的个数?
将 n 分解质因数,n = p1^a1 * p2^a2 * p2^a3 * ...... * px^ax 。(其中 pi 为质因数, ai 为质因数的指数)
那么 n 的因数的个数为 :Π (ai+1) (使用组合数学的知识很容易看出)
那么我们想要找到 1 到 n 的数中因数最多的一个,我们可以使用质数相乘,直接搜索。
注意最后的答案 Ans = p1^a1 * p2^a2 * ...... * px^ax ,满足当 p1 < p2 < p3 ... < px 时,a1 <= a2 <= a3 ... <= ax 。
因为对于某两个素数 p1, p2 (p1 < p2) ,若 a2 > a1,那么交换 a1, a2 之后,因数的个数并没有改变,相乘得到的数字却减小了,因此更优。
另外重要的一点是,我们只会用到前 10 个素数,因为前 10 个素数相乘就已经超过 n 的最大范围,使用更大的素数是没有意义的,不会更优。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath> using namespace std; const int INF = 0x3fffffff;
const int Prime[15] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29}; typedef long long LL; LL n, Ans, Cnt; void DFS(LL Num, LL MaxP, int Now, int NowCnt) {
if (NowCnt > Cnt || (NowCnt == Cnt && Num < Ans)) {
Ans = Num;
Cnt = NowCnt;
}
if (Now > 10) return;
LL NowNum = Num;
for (int i = 1; i <= MaxP; i++) {
NowNum *= (LL)Prime[Now];
if (NowNum > n) return;
DFS(NowNum, i, Now + 1, NowCnt * (i + 1));
}
} int main()
{
scanf("%lld", &n);
Ans = 1; Cnt = 1;
DFS(1, INF, 1, 1);
printf("%lld\n", Ans);
return 0;
}
[BZOJ 1053] [HAOI 2007] 反素数ant的更多相关文章
- bzoj 1053 [ HAOI 2007 ] 反素数ant ——暴搜
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 试图打表找规律,但无果... 看TJ了,暴搜: 注意参数 w 是 long long. ...
- [HAOI 2007]反素数ant
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数 ...
- 【BZOJ 1053】[HAOI2007]反素数ant
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...
- 【BZOJ】【1053】【HAOI2007】反素数ant
搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
- bzoj 1053: [HAOI2007]反素数ant 搜索
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1497 Solved: 821[Submit][Sta ...
- BZOJ 1053 [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1948 Solved: 1094[Submit][St ...
- 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)
1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...
随机推荐
- OpenGL中的投影使用
OpenGL中的投影使用 在OpenGL中,投影矩阵指定了可视区域的大小和形状.对于正投影与透视投影这两种不同的投影类型,它们分别有各自的用途. 正投影 它适用于2D图形,如文本.建筑画图等.在它的应 ...
- GCC 编绎选项 转
gcc提供了大量的警告选项,对代码中可能存在的问题提出警告,通常可以使用-Wall来开启以下警告: -Waddress -Warray-bounds (only with -O2) ...
- 实现FTP断点续传
应用需求: 网盘开发工作逐步进入各部分的整合阶段,当用户在客户端修改或新增加一个文件时,该文件要同步上传到服务器端对应的用户目录下,因此针对数据传输(即:上传.下载)这一块现在既定了三种传输方式,即: ...
- cocos2dx游戏项目总结(持续更新)
1.在一个layer里面,尽量只使用一种按钮类型.如MenuItem or CCControlButton.因为这两种按钮的优先级不同,在使用过程中会互相影响到事件触发的先后顺序. 2.细节的问题要一 ...
- vi 使用笔记
基本A 当前行追加J 去除本行和下一行之间的换行符(写CSS利器)~ 光标所在处的字符进行大小写互换* 向前搜索目前光标所在的单词# 向后搜索目前光标所在的单词% 查找与光标所在处相匹配的反括号, 包 ...
- 文件MD5查看器工具与源码实现及下载
由于工作中经常需要查看文件的MD5值,先前网上找了几个MD5值查看工具,但基本都是选择文件,还没有复制功能,于是今天我就自己编写了个MD5查看工具,支持文件拖拽查看,并可以复制功能. 由于本工具比较小 ...
- Oracle 设置archivelog错误解决方案
在Oracle 数据库的实际应用中,开启archivelog模式是必不可少的,但是在设置archivelog的过程中,可能因为不小心出现错误,导致数据库无法启动,本案例就是一种情况. 误操作现象: 设 ...
- Cocopods -第三方库的管理
前言 什么是CocoaPods? CocoaPods是OS X和iOS下的一个第三类库管理工具,通过CocoaPods工具我们可以为项目添加被称为“Pods”的依赖库(这些类库必须是CocoaPods ...
- RedHat搭建IPA-Server
ipa-server是红帽身份验证的一个完整解决方案,上游的开源项目是freeIPA,它本身不提供具体功能,而是整合了389-ds.ipa-server-dns.krb5-server等核心软件包,形 ...
- sendkeys && appactivate
sendkeys 用于输入键盘按键 appactivate 用于聚焦程序 on error resume next set ws = createObject("wscript.she ...