法一:暴力!

让干什么就干什么,那么久需要可持久化线段树了。

但是空间好紧。怎么破?

不down标记好了!

每个点维护sum和add两个信息,sum是这段真实的和,add是这段整体加了多少,如果这段区间被完全包含,返回sum,否则加上add * 询问落在这段区间的长度再递归回答。

怎么还是MLE?

麻辣鸡指针好像8字节,所以改成数组的就过了。。。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream> using namespace std; template<typename Q> Q &read(Q &x) {
static char c, f;
for(f = ; c = getchar(), !isdigit(c); ) if(c == '-') f = ;
for(x = ; isdigit(c); c = getchar()) x = x * + c - '';
if(f) x = -x; return x;
}
template<typename Q> Q read() {
static Q x; read(x); return x;
} typedef long long LL;
const int N = + ;
struct Node *pis;
struct Node {
LL sum, add;
Node *ch[]; Node *modify(int l, int r, int L, int R, LL d) {
Node *o = new Node(*this);
if(L <= l && r <= R) {
o->add += d;
o->sum += (r - l + ) * d;
return o;
}
int mid = (l + r) >> ;
if(L <= mid) o->ch[] = ch[]->modify(l, mid, L, R, d);
if(mid < R) o->ch[] = ch[]->modify(mid + , r, L, R, d);
o->sum = o->ch[]->sum + o->ch[]->sum + o->add * (r - l + );
return o;
} LL query(int l, int r, int L, int R) {
if(L <= l && r <= R) return sum;
int mid = (l + r) >> ;
LL res = (min(R, r) - max(L, l) + ) * add;
if(L <= mid) res += ch[]->query(l, mid, L, R);
if(mid < R) res += ch[]->query(mid + , r, L, R);
return res;
} void *operator new(size_t) {
return pis++;
}
}pool[ + ], *root[N]; void build(Node *&o, int l, int r) {
o = new Node, o->add = ;
if(l == r) return read(o->sum), void();
int mid = (l + r) >> ;
build(o->ch[], l, mid);
build(o->ch[], mid + , r);
o->sum = o->ch[]->sum + o->ch[]->sum;
} int main() {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif int n, m, cur;
char opt[];
while(scanf("%d%d", &n, &m) == ) {
cur = , pis = pool;
build(root[cur], , n);
while(m--) {
if(m == ) {
int debug = ;
}
scanf("%s", opt);
if(opt[] == 'C') {
int l, r; LL d;
read(l), read(r), read(d);
root[cur + ] = root[cur]->modify(, n, l, r, d);
cur++;
}else if(opt[] == 'Q') {
int l, r; read(l), read(r);
printf("%I64d\n", root[cur]->query(, n, l, r));
}else if(opt[] == 'H') {
int l, r, t; read(l), read(r), read(t);
printf("%I64d\n", root[t]->query(, n, l, r));
}else read(cur);
}
puts("");
} return ;
}

指针版

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream> using namespace std; template<typename Q> Q &read(Q &x) {
static char c, f;
for(f = ; c = getchar(), !isdigit(c); ) if(c == '-') f = ;
for(x = ; isdigit(c); c = getchar()) x = x * + c - '';
if(f) x = -x; return x;
}
template<typename Q> Q read() {
static Q x; read(x); return x;
} typedef long long LL;
const int N = + ; int ch[N][], tot, root[N];
LL sum[N], add[N]; int modify(int s, int l, int r, int L, int R, LL d) {
int x = tot++;
sum[x] = sum[s];
add[x] = add[s];
ch[x][] = ch[s][];
ch[x][] = ch[s][]; if(L <= l && r <= R) {
add[x] += d;
sum[x] += (r - l + ) * d;
}else {
int mid = (l + r) >> ;
if(L <= mid) ch[x][] = modify(ch[s][], l, mid, L, R, d);
if(mid < R) ch[x][] = modify(ch[s][], mid + , r, L, R, d);
sum[x] = sum[ch[x][]] + sum[ch[x][]] + add[x] * (r - l + );
}
return x;
} LL query(int s, int l, int r, int L, int R) {
if(L <= l && r <= R) return sum[s];
int mid = (l + r) >> ;
LL res = (min(R, r) - max(L, l) + ) * add[s];
if(L <= mid) res += query(ch[s][], l, mid, L, R);
if(mid < R) res += query(ch[s][], mid + , r, L, R);
return res;
} void build(int &s, int l, int r) {
s = tot++, add[s] = ;
if(l == r) return read(sum[s]), void();
int mid = (l + r) >> ;
build(ch[s][], l, mid);
build(ch[s][], mid + , r);
sum[s] = sum[ch[s][]] + sum[ch[s][]];
} int main() {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif int n, m, cur;
char opt[];
while(scanf("%d%d", &n, &m) == ) {
cur = tot = ;
build(root[cur], , n);
while(m--) {
if(m == ) {
int debug = ;
}
scanf("%s", opt);
if(opt[] == 'C') {
int l, r; LL d;
read(l), read(r), read(d);
root[cur + ] = modify(root[cur], , n, l, r, d);
cur++;
}else if(opt[] == 'Q') {
int l, r; read(l), read(r);
printf("%I64d\n", query(root[cur], , n, l, r));
}else if(opt[] == 'H') {
int l, r, t; read(l), read(r), read(t);
printf("%I64d\n", query(root[t], , n, l, r));
}else read(cur);
}
// puts("");
} return ;
}

数组版

法二:离线!

主要需要处理H操作。

在第一遍读入数据的时候维护一个pos[]数组,表示当前第i个版本是由pos[i]这个C操作创建的。

然后碰到H就把它挂在pos[t]上就可以,第二遍处理的时候直接回答。

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream> using namespace std; template<typename Q> Q &read(Q &x) {
static char c, f;
for(f = ; c = getchar(), !isdigit(c); ) if(c == '-') f = ;
for(x = ; isdigit(c); c = getchar()) x = x * + c - '';
if(f) x = -x; return x;
}
template<typename Q> Q read() {
static Q x; read(x); return x;
} typedef long long LL;
const int N = + ; int n, m;
class SegementTree {
private:
LL sum[N * ], tag[N * ]; #define mid ((l + r) >> 1)
#define ls s << 1, l, mid
#define rs s << 1 | 1, mid + 1, r void add_tag(int s, int l, int r, LL d) {
tag[s] += d;
sum[s] += (r - l + ) * d;
} void down(int s, int l, int r) {
if(tag[s]) {
add_tag(ls, tag[s]);
add_tag(rs, tag[s]);
tag[s] = ;
}
} int lft, rgt;
LL w; void modify(int s, int l, int r) {
if(lft <= l && r <= rgt) return add_tag(s, l, r, w);
down(s, l, r);
if(lft <= mid) modify(ls);
if(mid < rgt) modify(rs);
sum[s] = sum[s << ] + sum[s << | ];
} LL query(int s, int l, int r) {
if(lft <= l && r <= rgt) return sum[s];
down(s, l, r);
if(rgt <= mid) return query(ls);
if(mid < lft) return query(rs);
return query(ls) + query(rs);
} public:
void build(int s, int l, int r) {
tag[s] = ;
if(l == r) return read(sum[s]), void();
build(ls), build(rs);
sum[s] = sum[s << ] + sum[s << | ];
}
#undef mid
#undef ls
#undef rs void Modify(int l, int r, LL w) {
lft = l, rgt = r, this->w = w;
modify(, , n);
}
LL Query(int l, int r) {
lft = l, rgt = r;
return query(, , n);
}
}seg; struct operation {
char tp;
int l, r;
LL d;
}opt[N]; #include<stack>
stack<int> stk; #include<vector>
vector<int> G[N]; int pos[N];
LL ans[N]; int main() {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif char s[];
while(scanf("%d%d", &n, &m) == ) {
seg.build(, , n);
int cur = ;
for(int i = ; i < m; i++) {
scanf("%s", s);
opt[i].tp = s[];
if(s[] == 'C') {
read(opt[i].l), read(opt[i].r), read(opt[i].d);
pos[++cur] = i;
}else if(s[] == 'Q') {
read(opt[i].l), read(opt[i].r);
}else if(s[] == 'H') {
read(opt[i].l), read(opt[i].r), read(opt[i].d);
if(!opt[i].d) ans[i] = seg.Query(opt[i].l, opt[i].r);
else G[pos[opt[i].d]].push_back(i);
}else cur = read(opt[i].d);
} cur = ;
for(int i = ; i < m; i++) {
if(opt[i].tp == 'C') {
seg.Modify(opt[i].l, opt[i].r, opt[i].d);
for(unsigned j = ; j < G[i].size(); j++) {
int k = G[i][j];
ans[k] = seg.Query(opt[k].l, opt[k].r);
}
++cur;
stk.push(i);
}else if(opt[i].tp == 'Q') {
ans[i] = seg.Query(opt[i].l, opt[i].r);
}else if(opt[i].tp == 'B') {
while(cur > opt[i].d) {
int k = stk.top(); stk.pop();
seg.Modify(opt[k].l, opt[k].r, -opt[k].d);
cur--;
}
}
} for(int i = ; i < m; i++) {
if(opt[i].tp == 'Q' || opt[i].tp == 'H') {
printf("%I64d\n", ans[i]);
}
}
} return ;
}

离线版

hdu4348 - To the moon 可持久化线段树 区间修改 离线处理的更多相关文章

  1. HDU 4348.To the moon SPOJ - TTM To the moon -可持久化线段树(带修改在线区间更新(增减)、区间求和、查询历史版本、回退到历史版本、延时标记不下放(空间优化))

    To the moon Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  2. hdu4348 To the moon (可持久化线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4348 题目大意:给定含有n个数的序列,有以下四种操作 1.C l r d:表示对区间[l,r]中的数加 ...

  3. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  4. 【bzoj2653】middle 可持久化线段树区间合并

    题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[ ...

  5. Codeforces Round #442 (Div. 2) E Danil and a Part-time Job (dfs序加上一个线段树区间修改查询)

    题意: 给出一个具有N个点的树,现在给出两种操作: 1.get x,表示询问以x作为根的子树中,1的个数. 2.pow x,表示将以x作为根的子树全部翻转(0变1,1变0). 思路:dfs序加上一个线 ...

  6. 题解报告:hdu 1698 Just a Hook(线段树区间修改+lazy懒标记的运用)

    Problem Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing for m ...

  7. poj 2528 线段树区间修改+离散化

    Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...

  8. HDU 4348 To the moon 可持久化线段树,有时间戳的区间更新,区间求和

    To the moonTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.a ...

  9. HDU 4417.Super Mario-可持久化线段树(无修改区间小于等于H的数的个数)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. 【转】oracle数据库NUMBER数据类型

    原文:http://www.jb51.net/article/37633.htm NUMBER ( precision, scale)a)  precision表示数字中的有效位;如果没有指定prec ...

  2. [Linux]Ubuntu下如何将普通用户提升到root权限

    转至:http://jingyan.baidu.com/album/6181c3e0780131152ef153ff.html?picindex=0&qq-pf-to=pcqq.c2c  在u ...

  3. 让chrome浏览器快的不要不要的

    Chrome 已经成了很多人的主力浏览器,你可能被它的简洁快速所吸引,但它日益丰富的「扩展」,你可能从来都没有接触过,而事实上,很多扩展可以挖掘出 Chrome 的潜能,让它变得前所未有的强大.有哪些 ...

  4. MacOS 下端口占用解决办法

    现象:Mac下,IDEA正常关闭tomcat时,仍旧抛出8009 端口被占用. 解决: 1. 终端(命令行)上,输入命令 lsof -i tcp: 2. 找到这个进程的 PID,好吧,kill掉它 k ...

  5. BZOJ 4052 Magical GCD

    Description 给出一个长度在\(100000\)以内的正整数序列,大小不超过\(10^{12}\).求一个连续子序列,使得在所有的连续子序列中,它们的GCD值乘以它们的长度最大. Input ...

  6. [BZOJ 2186] [Sdoi2008] 沙拉公主的困惑 【欧拉函数】

    题目链接:BZOJ - 2186 题目分析 题目要求出 [1, n!] 中有多少数与 m! 互质.(m <= n) 那么在 [1, m!] 中有 phi(m!) 个数与 m! 互质,如果一个数 ...

  7. 【Tools】maven安装

    安装Maven插件老是报以下的错误,好像少了一个叫guava库的东西,但是在其他机器安装不报这个错误. Cannot complete the install because one or more  ...

  8. Android 通过开源框架AsyncHttpClient进行get和post请求

    使用时无需将这些代码放入子线程去执行,因为其内部已经封装到一个线程中运行了! public void asyncHttpClientGet(View view) { AsyncHttpClient c ...

  9. 【HDU3948】 The Number of Palindromes (后缀数组+RMQ)

    The Number of Palindromes Problem Description Now, you are given a string S. We want to know how man ...

  10. js页面传参数时,参数值包含特殊字符的处理

    js页面传参数时,参数值包含特殊字符应该怎么处理,解决方法就是利用js的escape函数,这个函数在解决中文乱码等方面应用的比较广泛.推荐使用. 工作中遇到的小问题,一个页面中通过window.sho ...