法一:暴力!

让干什么就干什么,那么久需要可持久化线段树了。

但是空间好紧。怎么破?

不down标记好了!

每个点维护sum和add两个信息,sum是这段真实的和,add是这段整体加了多少,如果这段区间被完全包含,返回sum,否则加上add * 询问落在这段区间的长度再递归回答。

怎么还是MLE?

麻辣鸡指针好像8字节,所以改成数组的就过了。。。

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream> using namespace std; template<typename Q> Q &read(Q &x) {
static char c, f;
for(f = ; c = getchar(), !isdigit(c); ) if(c == '-') f = ;
for(x = ; isdigit(c); c = getchar()) x = x * + c - '';
if(f) x = -x; return x;
}
template<typename Q> Q read() {
static Q x; read(x); return x;
} typedef long long LL;
const int N = + ;
struct Node *pis;
struct Node {
LL sum, add;
Node *ch[]; Node *modify(int l, int r, int L, int R, LL d) {
Node *o = new Node(*this);
if(L <= l && r <= R) {
o->add += d;
o->sum += (r - l + ) * d;
return o;
}
int mid = (l + r) >> ;
if(L <= mid) o->ch[] = ch[]->modify(l, mid, L, R, d);
if(mid < R) o->ch[] = ch[]->modify(mid + , r, L, R, d);
o->sum = o->ch[]->sum + o->ch[]->sum + o->add * (r - l + );
return o;
} LL query(int l, int r, int L, int R) {
if(L <= l && r <= R) return sum;
int mid = (l + r) >> ;
LL res = (min(R, r) - max(L, l) + ) * add;
if(L <= mid) res += ch[]->query(l, mid, L, R);
if(mid < R) res += ch[]->query(mid + , r, L, R);
return res;
} void *operator new(size_t) {
return pis++;
}
}pool[ + ], *root[N]; void build(Node *&o, int l, int r) {
o = new Node, o->add = ;
if(l == r) return read(o->sum), void();
int mid = (l + r) >> ;
build(o->ch[], l, mid);
build(o->ch[], mid + , r);
o->sum = o->ch[]->sum + o->ch[]->sum;
} int main() {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif int n, m, cur;
char opt[];
while(scanf("%d%d", &n, &m) == ) {
cur = , pis = pool;
build(root[cur], , n);
while(m--) {
if(m == ) {
int debug = ;
}
scanf("%s", opt);
if(opt[] == 'C') {
int l, r; LL d;
read(l), read(r), read(d);
root[cur + ] = root[cur]->modify(, n, l, r, d);
cur++;
}else if(opt[] == 'Q') {
int l, r; read(l), read(r);
printf("%I64d\n", root[cur]->query(, n, l, r));
}else if(opt[] == 'H') {
int l, r, t; read(l), read(r), read(t);
printf("%I64d\n", root[t]->query(, n, l, r));
}else read(cur);
}
puts("");
} return ;
}

指针版

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream> using namespace std; template<typename Q> Q &read(Q &x) {
static char c, f;
for(f = ; c = getchar(), !isdigit(c); ) if(c == '-') f = ;
for(x = ; isdigit(c); c = getchar()) x = x * + c - '';
if(f) x = -x; return x;
}
template<typename Q> Q read() {
static Q x; read(x); return x;
} typedef long long LL;
const int N = + ; int ch[N][], tot, root[N];
LL sum[N], add[N]; int modify(int s, int l, int r, int L, int R, LL d) {
int x = tot++;
sum[x] = sum[s];
add[x] = add[s];
ch[x][] = ch[s][];
ch[x][] = ch[s][]; if(L <= l && r <= R) {
add[x] += d;
sum[x] += (r - l + ) * d;
}else {
int mid = (l + r) >> ;
if(L <= mid) ch[x][] = modify(ch[s][], l, mid, L, R, d);
if(mid < R) ch[x][] = modify(ch[s][], mid + , r, L, R, d);
sum[x] = sum[ch[x][]] + sum[ch[x][]] + add[x] * (r - l + );
}
return x;
} LL query(int s, int l, int r, int L, int R) {
if(L <= l && r <= R) return sum[s];
int mid = (l + r) >> ;
LL res = (min(R, r) - max(L, l) + ) * add[s];
if(L <= mid) res += query(ch[s][], l, mid, L, R);
if(mid < R) res += query(ch[s][], mid + , r, L, R);
return res;
} void build(int &s, int l, int r) {
s = tot++, add[s] = ;
if(l == r) return read(sum[s]), void();
int mid = (l + r) >> ;
build(ch[s][], l, mid);
build(ch[s][], mid + , r);
sum[s] = sum[ch[s][]] + sum[ch[s][]];
} int main() {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif int n, m, cur;
char opt[];
while(scanf("%d%d", &n, &m) == ) {
cur = tot = ;
build(root[cur], , n);
while(m--) {
if(m == ) {
int debug = ;
}
scanf("%s", opt);
if(opt[] == 'C') {
int l, r; LL d;
read(l), read(r), read(d);
root[cur + ] = modify(root[cur], , n, l, r, d);
cur++;
}else if(opt[] == 'Q') {
int l, r; read(l), read(r);
printf("%I64d\n", query(root[cur], , n, l, r));
}else if(opt[] == 'H') {
int l, r, t; read(l), read(r), read(t);
printf("%I64d\n", query(root[t], , n, l, r));
}else read(cur);
}
// puts("");
} return ;
}

数组版

法二:离线!

主要需要处理H操作。

在第一遍读入数据的时候维护一个pos[]数组,表示当前第i个版本是由pos[i]这个C操作创建的。

然后碰到H就把它挂在pos[t]上就可以,第二遍处理的时候直接回答。

 #include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<iostream> using namespace std; template<typename Q> Q &read(Q &x) {
static char c, f;
for(f = ; c = getchar(), !isdigit(c); ) if(c == '-') f = ;
for(x = ; isdigit(c); c = getchar()) x = x * + c - '';
if(f) x = -x; return x;
}
template<typename Q> Q read() {
static Q x; read(x); return x;
} typedef long long LL;
const int N = + ; int n, m;
class SegementTree {
private:
LL sum[N * ], tag[N * ]; #define mid ((l + r) >> 1)
#define ls s << 1, l, mid
#define rs s << 1 | 1, mid + 1, r void add_tag(int s, int l, int r, LL d) {
tag[s] += d;
sum[s] += (r - l + ) * d;
} void down(int s, int l, int r) {
if(tag[s]) {
add_tag(ls, tag[s]);
add_tag(rs, tag[s]);
tag[s] = ;
}
} int lft, rgt;
LL w; void modify(int s, int l, int r) {
if(lft <= l && r <= rgt) return add_tag(s, l, r, w);
down(s, l, r);
if(lft <= mid) modify(ls);
if(mid < rgt) modify(rs);
sum[s] = sum[s << ] + sum[s << | ];
} LL query(int s, int l, int r) {
if(lft <= l && r <= rgt) return sum[s];
down(s, l, r);
if(rgt <= mid) return query(ls);
if(mid < lft) return query(rs);
return query(ls) + query(rs);
} public:
void build(int s, int l, int r) {
tag[s] = ;
if(l == r) return read(sum[s]), void();
build(ls), build(rs);
sum[s] = sum[s << ] + sum[s << | ];
}
#undef mid
#undef ls
#undef rs void Modify(int l, int r, LL w) {
lft = l, rgt = r, this->w = w;
modify(, , n);
}
LL Query(int l, int r) {
lft = l, rgt = r;
return query(, , n);
}
}seg; struct operation {
char tp;
int l, r;
LL d;
}opt[N]; #include<stack>
stack<int> stk; #include<vector>
vector<int> G[N]; int pos[N];
LL ans[N]; int main() {
#ifdef DEBUG
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
#endif char s[];
while(scanf("%d%d", &n, &m) == ) {
seg.build(, , n);
int cur = ;
for(int i = ; i < m; i++) {
scanf("%s", s);
opt[i].tp = s[];
if(s[] == 'C') {
read(opt[i].l), read(opt[i].r), read(opt[i].d);
pos[++cur] = i;
}else if(s[] == 'Q') {
read(opt[i].l), read(opt[i].r);
}else if(s[] == 'H') {
read(opt[i].l), read(opt[i].r), read(opt[i].d);
if(!opt[i].d) ans[i] = seg.Query(opt[i].l, opt[i].r);
else G[pos[opt[i].d]].push_back(i);
}else cur = read(opt[i].d);
} cur = ;
for(int i = ; i < m; i++) {
if(opt[i].tp == 'C') {
seg.Modify(opt[i].l, opt[i].r, opt[i].d);
for(unsigned j = ; j < G[i].size(); j++) {
int k = G[i][j];
ans[k] = seg.Query(opt[k].l, opt[k].r);
}
++cur;
stk.push(i);
}else if(opt[i].tp == 'Q') {
ans[i] = seg.Query(opt[i].l, opt[i].r);
}else if(opt[i].tp == 'B') {
while(cur > opt[i].d) {
int k = stk.top(); stk.pop();
seg.Modify(opt[k].l, opt[k].r, -opt[k].d);
cur--;
}
}
} for(int i = ; i < m; i++) {
if(opt[i].tp == 'Q' || opt[i].tp == 'H') {
printf("%I64d\n", ans[i]);
}
}
} return ;
}

离线版

hdu4348 - To the moon 可持久化线段树 区间修改 离线处理的更多相关文章

  1. HDU 4348.To the moon SPOJ - TTM To the moon -可持久化线段树(带修改在线区间更新(增减)、区间求和、查询历史版本、回退到历史版本、延时标记不下放(空间优化))

    To the moon Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  2. hdu4348 To the moon (可持久化线段树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4348 题目大意:给定含有n个数的序列,有以下四种操作 1.C l r d:表示对区间[l,r]中的数加 ...

  3. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  4. 【bzoj2653】middle 可持久化线段树区间合并

    题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[ ...

  5. Codeforces Round #442 (Div. 2) E Danil and a Part-time Job (dfs序加上一个线段树区间修改查询)

    题意: 给出一个具有N个点的树,现在给出两种操作: 1.get x,表示询问以x作为根的子树中,1的个数. 2.pow x,表示将以x作为根的子树全部翻转(0变1,1变0). 思路:dfs序加上一个线 ...

  6. 题解报告:hdu 1698 Just a Hook(线段树区间修改+lazy懒标记的运用)

    Problem Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing for m ...

  7. poj 2528 线段树区间修改+离散化

    Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...

  8. HDU 4348 To the moon 可持久化线段树,有时间戳的区间更新,区间求和

    To the moonTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view.a ...

  9. HDU 4417.Super Mario-可持久化线段树(无修改区间小于等于H的数的个数)

    Super Mario Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

随机推荐

  1. 用MFC如何高效地绘图

    显示图形如何避免闪烁,如何提高显示效率是问得比较多的问题.而且多数人认为MFC的绘图函数效率很低,总是想寻求其它的解决方案.     MFC的绘图效率的确不高但也不差,而且它的绘图函数使用非常简单,只 ...

  2. silverlight中DataGrid数据高亮显示

    效果如图所示, <UserControl xmlns:controls="clr-namespace:System.Windows.Controls;assembly=System.W ...

  3. RegularExpressionValidator 常用

    RegularExpressionValidator 控件用于验证输入值是否匹配正则表达式指定的模式 属性: ControlToValidate="要验证的控件名称" Valida ...

  4. matlab常用小函数(一)

    (第1维为对每一列操作,第2维维对每一行操作) sum 求和操作 max 求最大值操作 sum:求和操作 sum(A):矩阵A按列向求和(每一列求和),结果为一个行向量 sum(A,2):矩阵A按行向 ...

  5. Contest 20141027 总结

    这次考试主要问题出在第一题,由于考试期间没有看清题意,少看了一句 “a=A/1e9" 导致在考试结束最后5分钟发现时修改过于匆忙,改出问题了.另外,这道题同时告诉我long double 在 ...

  6. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  7. Map迭代器

            今天用到了,发现不会,随手谷歌之,整理如下. //Map是接口,刚才在那new Map,汗颜 Map<Character,Integer> mm = new HashMap ...

  8. navBar

    改变NavgationBar的颜色: [[UINavigationBar appearance] setBarTintColor:[UIColor blackColor]]; 改变NavgationB ...

  9. c printf

    printf的格式控制的完整格式:% - 0 m.n l或h 格式字符下面对组成格式说明的各项加以说明:①%:表示格式说明的起始符号,不可缺少.②-:有-表示左对齐输出,如省略表示右对齐输出.③0:有 ...

  10. keil多文件组织方法

    方法一 首先新建一个main.c的文件,加入到项目中,该文件中主要写main函数,然后,新建文件,如delay.c,编写内容之后,不要加入到项目,而是在main.c文件的开始写上#include“de ...