poj1308 Is It A Tree?(并查集)详解
poj1308 http://poj.org/problem?id=1308
题目大意:输入若干组测试数据,输入 (-1 -1) 时输入结束。每组测试数据以输入(0 0)为结束标志。然后根据所给的所有(父亲, 孩子)数据对判断 是否能构成一棵树。
分析: 都以了解树只有一个根节点,那么我们就判断是不是有多个树;又知道每个节点只有一个父亲节点,那么我们就判断他是不是构成环,成环则不是树。
注意: ①可以是空树; ②所给的节点构成森林(多个树)是不可以的,必须只能构成一棵树。
#include<iostream>
#include<cstdio>
#include<string.h>
using namespace std; int out, flag, x, y, num, pre[];
int find(int a)//查找根节点
{
int r, i, j;
r = a; i = a;
while(pre[r] != r)
r = pre[r];
while(pre[i] != r)
{
j = pre[i];
pre[i] = r;
i = j;
}
return r;
}
int main()
{
num = ; out = ;
while(out)
{
//先对所有节点的根节点进行初始化
for(int i = ; i <= ; i++)
pre[i] = i; flag = ;
while(scanf("%d%d", &x, &y))
{
if(x == && y == )
break;
else if(x == - && y == -)
{
out = ;
break;
}
int fx = find(x);
int fy = find(y);
//此处我们判断是否构成环
//如果x和y的根节点相同,那么他们已经是属于同一棵树
//若x又是y的父亲节点,那么将构成环
if(fx == fy)
flag = ;
//如果x和y根节点不同,即不属于同一棵树, 那么将其合并成一棵树
else if(fx != fy)
pre[fy] = fx;
}
int k = ;
//此处我们判断是不是森林,对所有节点(不包括没涉及的点)的根节点
//进行统计,若不都一样那么说明存在多个跟, 有多颗树, 否则是一棵树。
for(int i = ; i <= ; i++)
{
int ans = find(i);
if(ans != i && k == )
k = ans;
else if(k != && ans != i)
{
if(ans != k)
flag = ;
}
}
if(out == && flag == )
printf("Case %d is not a tree.\n", ++num);
else if(out == && flag == )
printf("Case %d is a tree.\n", ++num);
}
return ;
}
杭电的1272 和这个题差不多 稍微改改就可以了。
#include<iostream>
#include<cstdio>
#include<string.h>
using namespace std; int out, flag, x, y, pre[];
int find(int a)
{
int r, i, j;
r = a; i = a;
while(pre[r] != r)
r = pre[r];
while(pre[i] != r)
{
j = pre[i];
pre[i] = r;
i = j;
}
return r;
}
int main()
{
out = ;
while(out)
{
for(int i = ; i <= ; i++)
{
pre[i] = i;
}
flag = ;
while(scanf("%d%d", &x, &y))
{
if(x == && y == )
break;
else if(x == - && y == -)
{
out = ;
break;
}
int fx = find(x);
int fy = find(y);
if(fx != fy)
{
pre[fx] = fy;
}
else if(fx == fy)
{
flag = ;
}
}
int k = ;
for(int i = ; i <= ; i++)
{
int ans = find(i);
if(ans != i && k == )
k = ans;
else if(k != && ans != i)
{
if(ans != k)
flag = ;
}
}
if(out == && flag == )
printf("No\n");
else if(out == && flag == )
printf("Yes\n");
}
return ;
}
poj1308 Is It A Tree?(并查集)详解的更多相关文章
- 算法手记 之 数据结构(并查集详解)(POJ1703)
<ACM/ICPC算法训练教程>读书笔记-这一次补上并查集的部分.将对并查集的思想进行详细阐述,并附上本人AC掉POJ1703的Code. 在一些有N个元素的集合应用问题中,通常会将每个元 ...
- - > 并查集详解(第二节)
以下是并查集思路详解: 一:概念 并查集处理的是“集合"之间的关系.当给出两个元素的一个无序数对(a,b)时,需要快速“合并”a和b分别所在的集合,这期间需要反复“查找”某元素所在的集合.“ ...
- Linux DTS(Device Tree Source)设备树详解之二(dts匹配及发挥作用的流程篇)【转】
转自:https://blog.csdn.net/radianceblau/article/details/74722395 版权声明:本文为博主原创文章,未经博主允许不得转载.如本文对您有帮助,欢迎 ...
- Hdu.1325.Is It A Tree?(并查集)
Is It A Tree? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) To ...
- Is It A Tree?(并查集)
Is It A Tree? Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26002 Accepted: 8879 De ...
- CF109 C. Lucky Tree 并查集
Petya loves lucky numbers. We all know that lucky numbers are the positive integers whose decimal re ...
- HDU 5606 tree 并查集
tree 把每条边权是1的边断开,发现每个点离他最近的点个数就是他所在的连通块大小. 开一个并查集,每次读到边权是0的边就合并.最后Ansi=size[findset(i)],size表示每个并 ...
- [Swust OJ 856]--Huge Tree(并查集)
题目链接:http://acm.swust.edu.cn/problem/856/ Time limit(ms): 1000 Memory limit(kb): 10000 Description T ...
- Codeforces Round #363 (Div. 2)D. Fix a Tree(并查集)
D. Fix a Tree time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- Is It A Tree?(并查集)(dfs也可以解决)
Is It A Tree? Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%I64d & %I64u Submi ...
随机推荐
- MVC系统过滤器、自定义过滤器
一.系统过滤器使用说明 1.OutputCache过滤器 OutputCache过滤器用于缓存你查询结果,这样可以提高用户体验,也可以减少查询次数.它有以下属性: Duration:缓存的时间,以秒为 ...
- 在Eclipse中使用Github(EGit)
安装配置EGit 1. 安装Windows版的Git,登陆Github账号,登陆成功后会自动在本地和Github配置好密钥 2. 在Eclipse中安装EGit,地址http://download.e ...
- 转载--C++ STL
转自:http://wenku.baidu.com/view/15d18b4533687e21af45a9a4.html 1.C++ STL 之所以得到广泛的赞誉,也被很多人使用,不只是提供了像vec ...
- 初学redux笔记,及一个最简单的redux实例
categories: 笔记 tags: react redux 前端框架 把初学redux的一些笔记写了下来 分享一个入学redux很合适的demo, 用redux实现计数器 这是从阮一峰老师git ...
- 【CSS】Intermediate7:Pseudo Elements
1.selector:pseudo element{property:value;} 2.first-letter first-line CSS3:: 与pseudo class 区别 old br ...
- linux进程的几种状态
Linux是一个多用户,多任务的系统,可以同时运行多个用户的多个程序,就必然会产生很多的进程,而每个进程会有不同的状态. Linux进程状态:R (TASK_RUNNING),可执行状态. 只有在该状 ...
- HDU 1117 免费馅饼 二维动态规划
思路:a[i][j]表示j秒在i位置的数目,dp[i][j]表示j秒在i位置最大可以收到的数目. 转移方程:d[i][j]=max(dp[i-1][j],dp[i-1][j-1],dp[i-1][j+ ...
- 使用Windows Azure创建Windows系统虚拟机-下
如何在创建虚拟机之后登录虚拟机 这部分将展示如何登录到虚拟机,所以你可以管理它的设置和你会上面运行的应用程序. 注意: 对于要求和故障排除技巧,请参阅“使用RDP或SSH连接到Azure虚拟机”( C ...
- PLSQL配置介绍
PLSQL配置简介,优化 来自为知笔记(Wiz) 附件列表 s=selectf=FROMw=WHEREsf=SELECT * FROMdf=DELETE FROMsc=SELECT COUNT(* ...
- Storm系列(十)聚流示例
功能:将多个数据源的数据汇集到一个处理单元进行集中分类处理: 入口类TestMain 1 ; i < size; i++) { 31 content += input ...