有n个台阶,如果一次只能上1个或2个台阶,求一共有多少种上法
// n级台阶,求多少种跳法.cpp : Defines the entry point for the console application.
//
/*
思路:
如果只有一级台阶,n=1,很明显只有一种跳法
如果有两级台阶,n=2,则有两种跳法,一种是跳两下1级,一种是直接跳两级
那么我们来看看如果有n层台阶,可以怎么跳:
n层台阶可以是这么够成的
1.第n层台阶是从第n-1层跳1级上来的
2.第n层台阶是从第n-2层直接跳2级上来的
所以可以得到n层的跳法总数是F(n)=F(n-1)+F(n-2)
*/
#include "stdafx.h"
#include <iostream>
using namespace std;
int Solve(int n)
{
if(n==1)
return 1;
if(n==2)
return 2;
return Solve(n-1)+Solve(n-2);
} int _tmain(int argc, _TCHAR* argv[])
{
int num=Solve(4);
cout<<num<<endl;
system("pause");
return 0;
}
有n个台阶,如果一次只能上1个或2个台阶,求一共有多少种上法的更多相关文章
- hdu2049 不容易系列之(4)——考新郎 错排+组合 一共有N对新婚夫妇,N个新娘随机坐成一排,每个新郎只能选一个, 其中有M个新郎找错了新娘,求发生这种情况一共有多少种可能.
不容易系列之(4)——考新郎 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)To ...
- 一只青蛙从第一级台阶跳到第n级,每次可以跳任意级,共有多少种跳法,并写出递推式
是斐波那契数列问题 假设f(n)是n个台阶跳的次数:(假设已经调到第n个台阶,最后一次是由哪个台阶跳上来的) f(n) = f(n-1)+f(n-2)+...+f(n-(n-1)) + f(n-n) ...
- n个台阶,每次都可以走一步,走两步,走三步,走到顶部一共有多少种可能
分析 第一个台阶 1第二个台阶 11 2 //走两次1步或者走1次两步第三个台阶 111 12 21 3 第四个台阶 1111 112 121 211 22 13 31 思想:4阶台阶, ...
- 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
// test14.cpp : 定义控制台应用程序的入口点. // #include "stdafx.h" #include<iostream> #include< ...
- python假设一段楼梯共 n(n>1)个台阶,小朋友一步最多能上 3 个台阶,那么小朋友上这段楼 梯一共有多少种方法
我们先把前四节种数算出来(自己想是哪几类,如果你不会算,那就放弃写代码吧,干一些在街上卖肉夹馍的小生意,也挣得不少) 标号 1 2 3 4 种类 1 2 4 7 ...
- 题目描述: k一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
时间限制:1秒 空间限制:32768k 斐波那契数列指的是这样一个数列: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,377,610,9 ...
- 变态跳台阶-一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
class Solution { public: int jumpFloorII(int number) { ) ; ) ; *jumpFloorII(number-); } };
- 跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
class Solution { public: int jumpFloor(int number) { ) ; ) ; )+jumpFloor(number-); } }; 如果先建立数组,然后利用 ...
- 有个人想上一个n级的台阶,每次只能迈1级或者迈2级台阶,问:这个人有多少种方法可以把台阶走完?
有个人想上一个n级的台阶,每次只能迈1级或者迈2级台阶,问:这个人有多少种方法可以把台阶走完? 相关问题: (1)有个人想上一个n级的台阶,每次只能迈1级或者迈2级台阶,问:这个人有多少种方法可以把台 ...
随机推荐
- Swift(二,元组,可选类型,类型转化)
一,首先,元组是Swift中特有的,OC中没有元组相关类型,具体怎么用,看下面的例子吧 //1.使用元组来定义一组数据 let infoTuple = (,1.8) let nameTuple = i ...
- swift swizzle
SWIZZLE 由 王巍 (@ONEVCAT) 发布于 2015/09/30 Swizzle 是 Objective-C 运行时的黑魔法之一.我们可以通过 Swizzle 的手段,在运行时对某些方法的 ...
- 详解C/C++函数指针声明
要理解一个C程序,仅仅理解组成该程序的符号是不够的.程序员还必须理解这些符号是如何组合成声明.表达式.语句和程序的. 我们先来看看下面的一个语句: 1 ( *( void(*)())0)(); 这是当 ...
- C与OC、C++的区别
C语言的特点:1)C语言是结构化语言,层次清晰,调试和维护比较容易2)表现能力和处理能力比较强,可直接访问内存的物理地址3)c语言实现对硬件的编辑,c语言课用语系统软件的开发,也可用语应用软件的开发, ...
- C# 网页自动填表自动登录(转)
自动填表的方式有很多,关键是获取控件的id或者name. 比如源代码有 <input id="pwdInput" tabindex="2" class=& ...
- JavaScript自学代码--(三)
//通过 id 查找 HTML 元素 var x = document.getElementById("demo"); //通过标签名查找 HTML 元素 //本例查找 id=&q ...
- 【网络流24题】 No.14 孤岛营救问题 (分层图最短路)
[题意] 1944 年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛, 营救被敌军俘虏的大兵瑞恩. 瑞恩被关押在一个迷宫里, 迷宫地形复杂, 但幸好麦克得到了迷宫的地形图. 迷宫的外形是 ...
- awsomeplayer结构认识
把这个搞明白,算是顿悟的一个真实例子.怎么也搞不懂的架构,突然就想明白了.不过这其实是一个思维的过程. 当然如果你想明白这些东西,至少要非常清楚一个概念:接口. 我只是一个半路出家的开发者,我真正明白 ...
- Mozilla研究—深入理解mozilla所需的背景知识
mozilla是一个以浏览器为中心的软件平台,它在我们平台中占有重要地位.我们用它来实现WEB浏览器.WAP浏览器.邮件系统.电子书和帮助阅读器等应用程序.为此,我最近花了不少时间去阅读mozilla ...
- Android CoordinatorLayout + AppBarLayout(向上滚动隐藏指定的View)
在新的Android Support Library里面,新增了CoordinatorLayout, AppBarLayout等. 实现的效果: 向下滚动RecylerView,Tab会被隐藏,向上滚 ...