一、概述  

S3C2440的LCD控制器支持虚拟显示,说的容易理解一点就是,可以显示比实际显示器大的图像。可以这样想象,有一个大的图片,但是显示器(显示串口)比较小,但是我们可以相对于大图片(即大图片不动)移动显示器的位置,从而实现观察大图片的其他部分的内容。芯片手册上对这部分内容用一个图片来生动展示如下。

这里说明四点:

  1.虚拟内存(大照片的存储空间)比视口的缓冲空间大

  2. 虚拟内存的基地址是固定的

  3.大照片的开始位置(虚拟内存的基地址(LCDBANK))是以4M对齐的,eg:0x30400000

  4.可以更改视口的基地址(LCDBASEU)和结束地址(LCDBASEL)来移动视口

二、LCD控制器分析

1、虚拟显示的原理

思考两个问题:

  1.怎么告知LCD控制器大照片的尺寸,这将来涉及到视口如何取数据的问题(配置LCDSADDR3)

  2.怎么移动窗口(配置LCDSADDR1和LCDSADDR2)

  可以直接告诉你,大照片的垂直长度不用设置,只用设置大照片的水平宽度。例如,我的显示器视口大小是480*272,但是照片的大小是640*480。这时,我们只用告诉LCD控制器大照片的水平宽度640。在LCDSADDR3中有个OFFSIZE和PAGEWIDTH,其中PAGEWIDTH是视口宽度(480),而OFFSIZE是大照片多于视口的宽度(160)。通过这两个参数就告诉了控制器大照片的水平宽度为(480+160=640)。

  为什么要规定这个大照片的宽度呢?首先,我们考虑照片在内存中是怎样存储的(以16bpp为例):

       0      1   ···    639

0

(16bit) (16bit) (16bit) (16bit)

1

(16bit) (16bit) (16bit) (16bit)

·

·

·

·

·

·

·

·

·

·

479

(16bit) (16bit) (16bit) (16bit)

  可以看到理论上是个立体空间,(x,y)决定平面坐标,而z决定颜色。但是,在存储器上地址是连续的,可以看做一维的,说的意思是先存(0,0)位置的颜色,占用两个字节,然后再存(1,0)位置的颜色,又占两个字节······存完一行时,紧接着再存下一行。总之一句话,这个大图片是连续的存储在存储器中。

  然后,我们再考虑一下在这里边有一个小的窗口,我们以窗口在最左上角为例说明,如下图所示:

        0         1 。。。      479 。。。     639

0

 (16bit)   (16bit)  ···    (16bit)     (16bit)

1

 (16bit)   (16bit)   ···   (16bit)    (16bit)

···

···

···

···

···

···

···

271

(16bit)

(16bit)

···

(16bit)

···

(16bit)

···

···

···

···

···

···

···

479

  (16bit)    (16bit)  ···   (16bit)  ···   (16bit)

  我们可以看到,要显示的视口比较小,它在显示时从存储器中读取数据,并不是从连续的空间中读取数据,而是只读取每一行的部分(PAGEWIDTH)。

  最后,我们来考虑一下,规定大图片宽度(PAGEWIDTH和OFFSIZE)的意义。

1.通过规定大图片的宽度,LCD控制器就知道如何划分连续的存储空间成一行一行的,即将连续的空间立体化。以LCDBANK为0x30400000为例,图片宽度为(PAGEWIDTH+OFFSIZE=480+160=640)。这样,LCD控制器就知道第一行末尾的地址(以字节为单位)是(0x30400000+640*2-1)。其中,由于是16bpp,所以每个像素占两个字节,所以640要乘以2,才得到实际的一行的移动距离。同样,第三行的第一个像素的地址是(0x30400000+640*2*2)。

2.PAGEWIDTH和OFFSIZE可以告诉LCD控制器,那些数据需要显示,那些需要跳过。我们以上边的图为例,其实这个图的视口的基地址就是LCDBANK。在读取数据显示的时候,先把(0x30400000,0x30400000+(PAGEDITH-1)*2)区间的存储空间读取到显示器的第一行,然后跳过OFFSIZE*2个存储单元(BYTE);接着再把(0x30400000+(PAGEDITH+OFFSIZE)*1*2,0x30400000+(PAGEDITH+OFFSIZE)*1*2+(PAGEDITH-1)*2)读取到显示器的第二行,其中乘以1代表偏移了一行的距离;接着再把(0x30400000+(PAGEDITH+OFFSIZE)*2*2,0x30400000+(PAGEDITH+OFFSIZE)*2*2+(PAGEDITH-1)*2)读取到显示器的第三行······

  通过这些内容,相信你已经明白虚拟内存显示的基本原理。

2、移动视口

  还有一个问题怎么移动视口,明白了上边的讲述这个问题就相当简单了。我们更改视口的起始地址(LCDBASEU)和结束地址(LCDBASEL)就行了。先说一下这两个参数的意义,LCDBASEU是视口起始位置相对于LCDBANK的偏移地址,LCDBASEL是视口结束位置相对于LCDBANK相对于LCDBANK的地址。

  好了,举个例子来说明如何平移视口。假设,我们已经把大图片传到虚拟内存上了(以0x30400000为起始地址,占据的存储空间是640*480*2)。我们的视口占据的内存空间大小是(480*272*2)。刚开始,我们的视口在大照片的左上角,即LCDBASEU=0,而 LCDBASEL为LOWER21BITS(((0x30400000+640*272*2)>>1))。其中,函数LOWER21BITS()是区低21位。其实,视口结束的地址(以BYTE为单位)是0x30400000+640*272*2-1,而(0x30400000+640*272*2)这种方式(小于这个限)是规定结束地址限的很好方式。 需要注意的是,这里边乘的基数是640,而不是480,因为一行的宽度是640,这点需要注意。我们可以结合下边的LCDBASEL计算地址好好理解一下。

 这个时候,假设我们想右移图像100个像素,那么设置LCDSADDR1和LCDSADDR2就可以了。

#define LOWER21BITS(n)  ((n) & 0x1fffff)
#define  LCDFRAMEBUFFER      0x30400000
#define  LINEVAL_TFT_480272   (272-1)
#define HOZVAL_TFT_480272    (480-1) LCDSADDR1 = ((LCDFRAMEBUFFER>>)<<) | LOWER21BITS((LCDFRAMEBUFFER+*)>>);
LCDSADDR2 = LOWER21BITS(((LCDFRAMEBUFFER+*)+ \
                         (LINEVAL_TFT_480272+)*((HOZVAL_TFT_480272+)+)*)>>); 我们再在这个基础上下移200个像素,那么程序为: LCDSADDR1 = ((LCDFRAMEBUFFER>>)<<) | LOWER21BITS((LCDFRAMEBUFFER+*+**)>>);
LCDSADDR2 = LOWER21BITS(((LCDFRAMEBUFFER+*+**)+ \
                          (LINEVAL_TFT_480272+)*((HOZVAL_TFT_480272+)+)*)>>); 我们再在这个基础上上移100个像素,左移50个像素,那么程序为: LCDSADDR1 = ((LCDFRAMEBUFFER>>)<<) | LOWER21BITS((LCDFRAMEBUFFER+*+**-*-**)>>);
LCDSADDR2 = LOWER21BITS(((LCDFRAMEBUFFER+*+**-*-**)+ \
                          (LINEVAL_TFT_480272+)*((HOZVAL_TFT_480272+)+)*)>>);

  

S3C2440的LCD虚拟显示测试的更多相关文章

  1. TFT LCD控制显示总结(硬件概念、初始化相关配置)(转)

    源地址:http://nervfzb.blog.163.com/blog/static/314813992011215105432369/ TFT LCD是嵌入式中比较常用的显示器,S3C2440/S ...

  2. S3C2440上LCD驱动(FrameBuffer)实例开发讲解

    一.开发环境 主  机:VMWare--Fedora 9 开发板:Mini2440--64MB Nand, Kernel:2.6.30.4 编译器:arm-linux-gcc-4.3.2 二.背景知识 ...

  3. S3C2440上LCD驱动(FrameBuffer)实例开发讲解(一)

    一.开发环境 主  机:VMWare--Fedora 9 开发板:Mini2440--64MB Nand, Kernel:2.6.30.4 编译器:arm-linux-gcc-4.3.2 二.背景知识 ...

  4. LoadRunner 使用虚拟IP测试流程

    LoadRunner 使用虚拟IP测试流程 LoadRunner 使用IP欺骗的原因 . 当某个IP的访问过于频繁,或者访问量过大是,服务器会拒绝访问请求,这时候通过IP欺骗可以增加访问频率和访问量, ...

  5. 【STM32H7教程】第51章 STM32H7的LTDC应用之LCD汉字显示和2D图形显示

    完整教程下载地址:http://www.armbbs.cn/forum.php?mod=viewthread&tid=86980 第51章       STM32H7的LTDC应用之LCD汉字 ...

  6. 痞子衡嵌入式:记录i.MXRT1060驱动LCD屏显示横向渐变色有亮点问题解决全过程(提问篇)

    大家好,我是痞子衡,是正经搞技术的痞子.今天痞子衡给大家分享的是i.MXRT1060上LCD横向渐变色显示出亮点问题的分析解决经验. 痞子衡前段时间在支持一个i.MXRT1060客户项目时遇到了LCD ...

  7. LCD浮点数显示函数的探讨

    LCD浮点数显示函数的探讨 原创 2017年12月19日 单片机开放附赠的学习资料里面很少见到显示浮点数的函数,显示浮点数的操作也相当烦坠! 一般转换显示法 拿STM32单片机资源,我们选取ADC采样 ...

  8. 14.使用Crunch创建字典----Armitage扫描和利用----设置虚拟渗透测试实验室----proxychains最大匿名

    使用Crunch创建字典 kali自带的字典 usr/share/wordlists cd Desktop mkdir wordlists cd wordlists/ crunch --help cr ...

  9. 8位灰度图在LCD上显示

    一.概述 1.灰度 灰度使用黑色调表示物体,即用黑色为基准色,不同的饱和度的黑色来显示图像.每个灰度对象都具有从 0%(白色)到灰度条100%(黑色)的亮度值. 使用黑白或灰度扫描仪生成的图像通常以灰 ...

随机推荐

  1. HDU 4849-Wow! Such City!(最短路)

    Wow! Such City! Time Limit: 15000/8000 MS (Java/Others)    Memory Limit: 102400/102400 K (Java/Other ...

  2. UDP包的最大大小是多少?

      每个udp包的最大大小是多少?    65507 约等于 64K 为什么最大是65507?    因为udp包头有2个byte用于记录包体长度. 2个byte可表示最大值为: 2^16-1=64K ...

  3. schedule

    cocos2d-x(时间调度) 在游戏中,时常需要隔一段时间更新一些数据或者是人物位置,Cocos2D-x 中提供了这些时间调度的函数,所有CCNode 类的子类都有这样的函数. schedule(s ...

  4. 【转】Cocos2d-x 2.0 拖尾效果深入分析

    Cocos2d-x 2.0 拖尾效果深入分析 另:本章所用Cocos2d-x版本为: cocos2d-2.0-x-2.0.2@ Aug 30 2012 http://cn.cocos2d-x.org/ ...

  5. 20个Linux系统监视工具

    需要监视Linux服务器的性能?试试这些内置的命令和一些附加的工具吧.大多数Linux发行版都集成了一些监视工具.这些工具可以获取有关系统活动的信息的详细指标.通过这些工具,你可以发现产生系统性能问题 ...

  6. (原创)如何在spannableString中使用自定义字体

    最近在做车联网的产品,主打的是语音交互和导航功能,UI给的导航界面可真是够酷炫的.但麻烦的事情也来了,里面的一句话居然用到了三种字体.界面如图所示: 从图中可以看出 500m左前方行驶 居然使用了三种 ...

  7. js按值传递还是按引用传递?

    js和其他大部分语言一样,有基本类型和引用类型.因此访问变量就有按值和按引用两种方式,但是传参的时候却只能按值传递.基本类型作为参数时按值传递自然无可厚非,但引用类型作为参数也按值传递就让人有点困惑了 ...

  8. 编译LFS

    成功编译并运行linux from scratch 7.7 system,有必要作下总结.本次用的编译LFS的环境是: 虚拟机是virtalbox宿主系统为CentOS 7.0 x86_64 (cor ...

  9. 【Python】分布式任务队列Celery使用参考资料

    Python-Celery Homepage | Celery: Distributed Task Queue User Guide - Celery 4.0.2 documentation Task ...

  10. (转)ASP.NET禁用刷新重复提交Backspace键

    在网页制作中,由于Backspace键可以回退到上一个网页,利用了缓存的数据,从而导致一些错误发生.浏览器的后退按钮使得我们能够方便地返回以前访问过的页面,它无疑非常有用.但有时候我们不得不关闭这个功 ...