bzoj3677: [Apio2014]连珠线
Description
在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”。不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色和蓝色。游戏
开始时,只有1个珠子,而接下来新的珠子只能通过线由以下两种方式被加入:
1.Append(w,杪):-个新的珠子w和一个已有的珠子杪连接,连接使用红线。
2.Insert(w,u,v):-个新的珠子w加入到一对通过红线连接的珠子(u,杪)
之间,并将红线改成蓝线。也就是将原来u连到1的红线变为u连到w的蓝线与W连到V的蓝线。
无论红线还是蓝线,每条线都有一个长度。而在游戏的最后,将得到游戏的
最后得分:所有蓝线的长度总和。
现在有一个这个游戏的最终结构:你将获取到所有珠子之间的连接情况和所
有连线的长度,但是你并不知道每条线的颜色是什么。
你现在需要找到这个结构下的最大得分,也就是说:你需要给每条线一个颜
色f红色或蓝色),使得这种连线的配色方案是可以通过上述提到的两种连线方式
操作得到的,并且游戏得分最大。在本题中你只需要输出最大的得分即可。
Input
第一行是一个正整数n,表示珠子的个数,珠子编号为1刭n。
接下来n-l行,每行三个正整数ai,bi(l≤ai10000),表示有一条长度为ci的线连接了珠子ai和珠子bi。
Output
输出一个整数,为游戏的最大得分。
Sample Input
1 2
1 3 4 0
1 4 1 5
1 5 2 0
Sample Output
HINT
数据范围满足1≤n≤200000。
题解:
假如确定了根,再通过若干操作得到这棵树,那么对于insert(w,u,v)操作,u,w,v必然为祖父节点-父节点-子节点的形式
然后可以O(n)的枚举根,设 f[i][0/1] 表示以i为根的子树,i是否为中转点的情况下,子树蓝边的最大总和是多少
这个可以O(1)的从儿子转移过来,所以dp的复杂度为O(n),但总复杂度为O(n2)
我们可以在状态里多加一个0/1,即设 f[i][0/1][0/1] 表示以i为根的子树,以i的为子树里除去i以外是否有根节点,i是否为中转点的情况下,子树蓝边的最大总和是多少
当以i的为子树里除去i以外没有根节点,和前面的转移一样
否则,就会多一种转移,设根节点在j,就是可以有insert(i,j,x),其中x是i的另一个子节点
code:
#include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
char ch;
bool ok;
void read(int &x){
for (ok=,ch=getchar();!isdigit(ch);ch=getchar()) if (ch=='-') ok=;
for (x=;isdigit(ch);x=x*+ch-'',ch=getchar());
if (ok) x=-x;
}
const int maxn=;
const int maxm=maxn*;
const int inf=;
int n,a,b,c;
int f[maxn][][];
struct Graph{
int tot,now[maxn],son[maxm],pre[maxm],val[maxm];
int premax[maxn],sufmax[maxn],g[maxn];
void put(int a,int b,int c){pre[++tot]=now[a],now[a]=tot,son[tot]=b,val[tot]=c;}
void add(int a,int b,int c){put(a,b,c),put(b,a,c);}
void dfs(int u,int fa){
for (int p=now[u],v=son[p];p;p=pre[p],v=son[p]) if (v!=fa) dfs(v,u);
int cnt=,sum=; premax[]=sufmax[]=-inf;
for (int p=now[u],v=son[p];p;p=pre[p],v=son[p]) if (v!=fa)
g[v]=max(f[v][][],f[v][][]+val[p]),sum+=g[v],++cnt,premax[cnt]=sufmax[cnt]=f[v][][]+val[p]-g[v];
premax[cnt+]=sufmax[cnt+]=-inf;
for (int i=;i<=cnt;i++) premax[i]=max(premax[i],premax[i-]);
for (int i=cnt;i>=;i--) sufmax[i]=max(sufmax[i],sufmax[i+]);
f[u][][]=sum,f[u][][]=cnt?f[u][][]+premax[cnt]:-inf,f[u][][]=-inf;
for (int p=now[u],v=son[p],i=;p;p=pre[p],v=son[p]) if (v!=fa){i++;
int res=max(premax[i-],sufmax[i+]),tmp=sum-g[v];
f[u][][]=max(f[u][][],max(f[v][][]+val[p]+tmp,max(f[v][][],f[v][][])+tmp+max(val[p]+res,)));
f[u][][]=max(f[u][][],max(f[v][][],f[v][][])+val[p]+tmp);
}
}
}G;
int main(){
read(n);
for (int i=;i<n;i++) read(a),read(b),read(c),G.add(a,b,c);
G.dfs(,);
printf("%d\n",max(f[][][],f[][][]));
return ;
}
bzoj3677: [Apio2014]连珠线的更多相关文章
- [Bzoj3677][Apio2014]连珠线(树形dp)
3677: [Apio2014]连珠线 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 434 Solved: 270[Submit][Status] ...
- 【BZOJ3677】[Apio2014]连珠线 换根DP
[BZOJ3677][Apio2014]连珠线 Description 在列奥纳多·达·芬奇时期,有一个流行的童年游戏,叫做“连珠线”.不出所料,玩这个游戏只需要珠子和线,珠子从1到礼编号,线分为红色 ...
- 【LG3647】[APIO2014]连珠线
[LG3647][APIO2014]连珠线 题面 洛谷 题解 首先考虑一下蓝线连起来的情况,一定是儿子-父亲-另一个儿子或者是儿子-父亲-父亲的父亲. 而因为一开始只有一个点在当前局面上,将一条红边变 ...
- 题解 [APIO2014]连珠线
题解 [APIO2014]连珠线 题面 解析 首先这连成的是一棵树啊. 并且\(yy\)一下,如果钦定一个根, 那么这上面的蓝线都是爸爸->儿子->孙子这样的,因为像下图这样的构造不出来: ...
- 并不对劲的bzoj3677:p3647:[APIO2014]连珠线
题目大意 有一种生成\(n\)个点的树的方法为: 一开始有一个点,\(n-1\)次操作,每次可以有两种操作:1.选一个点,用一条红边将它与新点连接:2.将新点放在一条红边上,新点与这条红边两端点直接的 ...
- APIO2014 连珠线
题目链接:戳我 换根DP 由于蒟蒻不会做这个题,所以参考了大佬. 本来想的是有三种情况,一种是该节点不作为两个蓝线的中点(我们称这种不是关键节点),一种是该节点作为关键点.连两个子节点,一种是作为关键 ...
- bzoj 3677: [Apio2014]连珠线【树形dp】
参考:http://www.cnblogs.com/mmlz/p/4456547.html 枚举根,然后做树形dp,设f[i][1]为i是蓝线中点(蓝线一定是父子孙三代),f[i][0]为不是,转移很 ...
- Luogu P3647 [APIO2014]连珠线
题目 换根dp. 显然对于给定的一棵有根树,蓝线都不能拐弯. 设\(f_{u,0}\)表示\(u\)不是蓝线中点时子树内的答案,\(f_{u,1}\)表示\(u\)是蓝线中点时子树内的答案.(以\(1 ...
- 洛谷$P3647\ [APIO2014]$连珠线 换根$dp$
正解:换根$dp$ 解题报告: 传送门! 谁能想到$9102$年了$gql$居然还没写过换根$dp$呢,,,$/kel$ 考虑固定了从哪个点开始之后,以这个点作为根,蓝线只可能是直上直下的,形如&qu ...
随机推荐
- 基于Linux系统的病毒
虽然在Linux里传播的病毒不多,但也是存在一些,我从一些安全网站搜集了一些资料. 1.病毒名称: Linux.Slapper.Worm 类别: 蠕虫 病毒资料: 感染系统:Linux 不受影响系统: ...
- How to Enable Multi-Touch
This is a frequently asked question. Multi-touch feature is available on both iOS & Android port ...
- 第一篇:GPU 编程技术的发展历程及现状
前言 本文通过介绍 GPU 编程技术的发展历程,让大家初步地了解 GPU 编程,走进 GPU 编程的世界. 冯诺依曼计算机架构的瓶颈 曾经,几乎所有的处理器都是以冯诺依曼计算机架构为基础的.该系统架构 ...
- iOS开发中常用到的加密方式
1 base64 1.1 简介 Base64编码的思想是是采用64个基本的ASCII码字符对数据进行重新编码.它将需要编码的数据拆分成字节数组.以3个字节为一组.按顺序排列24位数据,再把这24位数据 ...
- Cookie中的三个容器request,session,application的设置和获取
public class SaveServlet extends HttpServlet { public void doGet(HttpServletRequest request, HttpSer ...
- LUN 和 LVM 知识
LUN是对存储设备而言的,volume是对主机而言的. lun是指硬件层分出的逻辑盘,如raid卡可以将做好的400G的raid5再分成若干个逻辑盘,以便于使用,每一个逻辑盘对应一个lun号,OS层仍 ...
- Linux学习新篇——常用命令和快捷键总结
最近刚接触Linux,整理了一些常用的命令和快捷键 Tab补全命令 当命令记不清了,输入记得的前几个用Tab就可以将该命令自动补全. 启动tomcat服务用$startup.sh 停止tomcat服务 ...
- linux 软连接方式实现上传文件存储目录的无缝迁移
背景: 由于前期的磁盘空间规划与后期的业务要求不符合.原先/home被用于用户上传文件的存储目录,但是由于上传文件的逐渐增多,而原来的/home目录的空间不足,需要给/home目录进行扩容.同时各个应 ...
- JUnit4简要说明
单元测试(unit testing),是指对软件中的最小可测试单元进行检查和验证. 开发者编写一小段代码,用于检验被测代码的一个很小的.很明确的功能是否正确. 通常而言,一个单元测试是用于判断某个特定 ...
- 跨时钟域设计【二】——Fast to slow clock domain
跨时钟域设计中,对快时钟域的Trigger信号同步到慢时钟域,可以采用上面的电路实现,Verilog HDL设计如下: // Trigger signal sync, Fast clock dom ...