RMQ问题与ST算法
RMQ(Range Minimum/Maximum Query)问题是求区间最值问题。
对于长度为 n 的数组 A,进行若干次查询,对于区间 [L,R] 返回数组A中下标在 [L,R] 中的最小(大)值。
可以用线段树来解决这个问题,预处理的复杂度是 O(nlogn),查询的复杂度是 O(logn)。
更好的解法是ST算法。Sparse_Table算法,即稀疏表算法,这个方法可以在 O(nlogn) 的预处理后达到 O(1) 的查询代价。
这个算法非常容易实现。
定义 F[ i, k ] 表示从 i 开始的,长度为 2^k 的区间内元素的最小值。
当 k = 0 时,F[ i, 0 ] 的值显然就是A[ i ] 的值。
而 k > 0 时,对于从 i 开始的长度为 2^k 的区间,它的最小值显然是从 i 开始的长度为 2^(k-1) 的区间中的最小值与从 i+2^(k-1)开始的长度为 2^(k-1) 的区间中的最小值中更小的那一个。
则有递推公式 F[ i, k ] = min{ F[ i, k-1 ], F[ i+2^(k-1), k-1] }
由于 2^k<=n,因此 F 数组中的元素个数不会超过 nlogn,而每个元素都可以在O(1)的时间内计算出,因此总时间为O(nlogn)。
int F[maxn][];
//元素从1编号到n
void RMQ_init(int A[],int n){
for (int i=;i<=n;i++) F[i][]=A[i];
for (int k=;(<<k)<=n;k++)
for (int i=;i+(<<k)-<=n;i++)
F[i][k]=min(F[i][k-],F[i+(<<(k-))][k-]);
}
RMQ的预处理
对于查询操作 [L,R],定义 k 为满足 2^k<=R-L+1 的最大整数。
则以L开头的长度为 2^k 的区间与以R结尾的长度为 2^k 的区间,能够完整的覆盖区间 [L,R]。
因此这两个区间的最小值中更小的那一个就是所查询的区间 [L,R] 的最小值。
int RMQ(int L,int R){
int k=;
while ((<<(k+))<=R-L+) k++;
return min(d[L][k],d[R-(<<k)+][k]);
}
RMQ查询
ST 算法也可以求出最值所在的下标,只要将 F 数组中储存的值变为数组 A 的下标即可。
RMQ问题与ST算法的更多相关文章
- RMQ问题之ST算法
RMQ问题之ST算法 RMQ(Range Minimum/Maximum Query)问题,即区间最值问题.给你n个数,a1 , a2 , a3 , ... ,an,求出区间 [ l , r ]的最大 ...
- 51NOD1174 区间最大数 && RMQ问题(ST算法)
RMQ问题(区间最值问题Range Minimum/Maximum Query) ST算法 RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度 ...
- HDU 3183 A Magic Lamp(RMQ问题, ST算法)
原题目 A Magic Lamp Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]
参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...
- HDU 3183 - A Magic Lamp - [RMQ][ST算法]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 Problem DescriptionKiki likes traveling. One day ...
- RMQ问题+ST算法
一.相关定义 RMQ问题 求给定区间的最值: 一般题目给定许多询问区间. 常见问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j之间的最小/大 ...
- POJ 3264 Balanced Lineup RMQ ST算法
题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...
- HDU 5443 The Water Problem (ST算法)
题目链接:HDU 5443 Problem Description In Land waterless, water is a very limited resource. People always ...
- 求解区间最值 - RMQ - ST 算法介绍
解析 ST 算法是 RMQ(Range Minimum/Maximum Query)中一个很经典的算法,它天生用来求得一个区间的最值,但却不能维护最值,也就是说,过程中不能改变区间中的某个元素的值.O ...
随机推荐
- USB OTG
OTG检测的原理是:USB OTG标准在完全兼容USB2.0标准的基础上,增添了电源管理(节省功耗)功能,它允许设备既可作为主机,也可作为外设操作(两用OTG).USB OTG技术可实现没有主机时设备 ...
- 【简译】JavaScript闭包导致的闭合变量问题以及解决方法
本文是翻译此文 预先阅读此文:闭合循环变量时被认为有害的(closing over the loop variable considered harmful) JavaScript也有同样的问题.考虑 ...
- Leetcode解题思想总结篇:双指针
Leetcode解题思想总结篇:双指针 1概念 双指针:快慢指针. 快指针在每一步走的步长要比慢指针一步走的步长要多.快指针通常的步速是慢指针的2倍. 在循环中的指针移动通常为: faster = f ...
- 【转并修改】VS2013 MVC Web项目使用内置的IISExpress支持局域网内部机器(手机、PC)访问、调试
转:http://www.cnblogs.com/ShaYeBlog/p/4072074.html VS2013内置了IISExpress.做asp.net MVC的web项目开发时,Ctrl+F5和 ...
- 如何在多线程中调用winform窗体控件
由于 Windows 窗体控件本质上不是线程安全的.因此如果有两个或多个线程适度操作某一控件的状态(set value),则可能会迫使该控件进入一种不一致的状态.还可能出现其他与线程相关的 bug,包 ...
- WinDbg配置和使用基础
WinDbg配置和使用基础 WinDbg是微软发布的一款相当优秀的源码级(source-level)调试工具,可以用于Kernel模式调试和用户模式调试,还可以调试Dump文件. 1. WinDbg介 ...
- Bzoj 4408: [Fjoi 2016]神秘数 可持久化线段树,神题
4408: [Fjoi 2016]神秘数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 177 Solved: 128[Submit][Status ...
- HDU 4749 Parade Show 2013 ACM/ICPC Asia Regional Nanjing Online
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4749 题目大意:给一个原序列N,再给出一个序列M,问从N中一共可以找出多少个长度为m的序列,序列中的数 ...
- poj 3608 Bridge Across Islands
题目:计算两个不相交凸多边形间的最小距离. 分析:计算几何.凸包.旋转卡壳.分别求出凸包,利用旋转卡壳求出对踵点对,枚举距离即可. 注意:1.利用向量法判断旋转,而不是计算角度:避免精度问题和TLE. ...
- btrace 笔记
转载请注明原链接地址 http://www.cnblogs.com/dongxiao-yang/p/6134393.html btrace 是一个可以不用重启线上java业务查问题的神器,记一下自己折 ...