Problem description

A graph consists of a set of vertices and edges between pairs of vertices. Two vertices are connected if there is a path (subset of edges) leading from one vertex to another, and a connected component is a maximal subset of vertices that are all connected to each other. A graph consists of one or more connected components.

A tree is a connected component without cycles, but it can also be characterized in other ways. For example, a tree consisting of n vertices has exactly n-1 edges. Also, there is a unique path connecting any pair of vertices in a tree.

Given a graph, report the number of connected components that are also trees.

Input

The input consists of a number of cases. Each case starts with two non-negative integers n and m, satisfying n ≤ 500 and m ≤ n(n-1)/2. This is followed by m lines, each containing two integers specifying the two distinct vertices connected by an edge. No edge will be specified twice (or given again in a different order). The vertices are labelled 1 to n. The end of input is indicated by a line containing n = m = 0.

Output

For each case, print one of the following lines depending on how many different connected components are trees (T > 1 below):

	Case x: A forest of T trees.
Case x: There is one tree.
Case x: No trees.

x is the case number (starting from 1).

Sample Input
6 3
1 2
2 3
3 4
6 5
1 2
2 3
3 4
4 5
5 6
6 6
1 2
2 3
1 3
4 5
5 6
6 4
0 0
Sample Output
Case 1: A forest of 3 trees.
Case 2: There is one tree.
Case 3: No trees.
#include<stdio.h>
int fath[505],cycl[505],k,n;
void setfirst()
{
k=n;
for(int i=1;i<=n;i++)
{
fath[i]=i; cycl[i]=0;
}
}
int find_fath(int x)
{
if(x!=fath[x])
fath[x]=find_fath(fath[x]);
return fath[x];
}
void setTree(int a,int b)
{
a=find_fath(a);
b=find_fath(b);
if(cycl[b]&&cycl[a])
return ;
k--;
if(a!=b)
{
if(cycl[a])
fath[b]=a;
else
fath[a]=b;
}
else
cycl[a]=1;
}
int main()
{
int a,b,m,t=1;
while(scanf("%d%d",&n,&m)>0&&m+n!=0)
{
setfirst();
while(m--)
{
scanf("%d%d",&a,&b);
setTree(a,b);
}
printf("Case %d: ",t++);
if(k>1)printf("A forest of %d trees.\n",k);
if(k==1)printf("There is one tree.\n");
if(k==0)printf("No trees.\n");
}
}

hnsd11348tree(并查集)的更多相关文章

  1. BZOJ 4199: [Noi2015]品酒大会 [后缀数组 带权并查集]

    4199: [Noi2015]品酒大会 UOJ:http://uoj.ac/problem/131 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战两个环节,分别向优胜者颁发“首席品 ...

  2. 关押罪犯 and 食物链(并查集)

    题目描述 S 城现有两座监狱,一共关押着N 名罪犯,编号分别为1~N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用"怨气值"( ...

  3. 图的生成树(森林)(克鲁斯卡尔Kruskal算法和普里姆Prim算法)、以及并查集的使用

    图的连通性问题:无向图的连通分量和生成树,所有顶点均由边连接在一起,但不存在回路的图. 设图 G=(V, E) 是个连通图,当从图任一顶点出发遍历图G 时,将边集 E(G) 分成两个集合 T(G) 和 ...

  4. bzoj1854--并查集

    这题有一种神奇的并查集做法. 将每种属性作为一个点,每种装备作为一条边,则可以得到如下结论: 1.如果一个有n个点的连通块有n-1条边,则我们可以满足这个连通块的n-1个点. 2.如果一个有n个点的连 ...

  5. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  6. [bzoj3123][sdoi2013森林] (树上主席树+lca+并查集启发式合并+暴力重构森林)

    Description Input 第一行包含一个正整数testcase,表示当前测试数据的测试点编号.保证1≤testcase≤20. 第二行包含三个整数N,M,T,分别表示节点数.初始边数.操作数 ...

  7. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  8. Codeforces 731C Socks 并查集

    题目:http://codeforces.com/contest/731/problem/C 思路:并查集处理出哪几堆袜子是同一颜色的,对于每堆袜子求出出现最多颜色的次数,用这堆袜子的数目减去该值即为 ...

  9. “玲珑杯”ACM比赛 Round #7 B -- Capture(并查集+优先队列)

    题意:初始时有个首都1,有n个操作 +V表示有一个新的城市连接到了V号城市 -V表示V号城市断开了连接,同时V的子城市也会断开连接 每次输出在每次操作后到首都1距离最远的城市编号,多个距离相同输出编号 ...

随机推荐

  1. LNMP安装WordPress3.4.2看不到主题解决方法

    喜欢LNMP配置环境的朋友,又是wordpress建立的博客程序,安装之后发现一个问题在网站后台看不到模板主题,重新下载了一款新的主题也查看不了.开始以为是程序的问题,于是我重新下载新版本的WordP ...

  2. Java学习----你可以知道对象的工作结果(获取方法的返回值)

    1.写返回类型 2.return 返回值 3.定义变量接受返回值 public class App2 { public String [] print(String msg, int num) { f ...

  3. 关于考虑浏览器兼容性时间的工具demo

    //支持跨浏览器的添加事件. var btn = document.getElementById("btn"); function showMes() { alert(" ...

  4. 网站开发常用jQuery插件总结(三)拖拽插件gridster

    1.gridster插件功能 实现类似于win8 磁贴拖拽的功能 2.gridster官方地址 http://gridster.net/ 在官方的网站上也有插件的帮助和实例,但是按照官方的说明,我在本 ...

  5. asp.net MVC 从其它项目复制过来的Area里面的Controllers文件读取不到

    从其实项目复制过来的Controllers,在访问时显示不存在文件 检查一下对应的area里面的AreaRegistration文件的命名空间是否一致

  6. PHPCMS v9 自定义表单添加验证码验证

    1. 在 \phpcms\templates\default\formguide\show.html 中添加验证码显示 <input type="text" id=" ...

  7. mysql数据类型——字符串char(m)和varchar(m)

    char(m) 定长字符串类型  非 Unicode 字符 varchar(m) 变长字符串类型  非 Unicode 数据 说明:M为最大可存储字节数 汉子占两个字节,通过指定m,来限制存储的最大字 ...

  8. 黑马程序员—C语言的特点和关键字

    ------Java培训.Android培训.iOS培训..Net培训.期待与您交流! ------- C语言的简介 一. C语言具有下列特点: C语言既具有低级语言直接操纵硬件的特点,又具有高级语言 ...

  9. 一篇旧文章,结合汇编探索this指针

    //VC6.0下成功编译 #include <iostream.h> class X{ public: void foo(int b,int c){ this->a=b*c; cou ...

  10. 深入浅出C语言中的堆和栈

    在谈堆栈的时候,我在这有必要把计算机的内存结构给大家简单的介绍下(高手们可以直接飘过) 一. 内存结构   每个程序一启动都有一个大小为4GB的内存,这个内存叫虚拟内存,是概念上的,真正能用到的,只是 ...