G - 贪心

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Submit Status

Description

 

Simon and Garfunkel Corporation (SG Corp.) is a large steel-making company with thousand of customers. Keeping the customer satisfied is one of the major objective of Paul and Art, the managers.

Customers issue orders that are characterized by two integer values q<tex2html_verbatim_mark> , the amount of steel required (in tons) and d<tex2html_verbatim_mark> , the due date (a calender date converted in seconds). The due date has to be met if SG Corp. accepts the order. Stated another way, when an order is accepted, the corresponding amount of steel has to be produced before its due date. Of course, the factory can process no more than one order at a time.

Although the manufacturing process is rather complex, it can be seen as a single production line with a constant throughput. In the following, we assume that producing q<tex2html_verbatim_mark> tons of steel takes exactly q<tex2html_verbatim_mark> seconds (i.e., throughput is 1). The factory runs on a monthly production plan. Before the beginning of the month, all customers' orders are collected and Paul and Art determine which of them are going to be accepted and which ones are to be rejected in the next production period. A production schedule is then designed. To keep customers satisfied, Paul and Art want tominimize the total number of orders that are rejected. In the following, we assume that the beginning of the next production plan (i.e., the first day of the next month) corresponds to date 0.

Hogdson and Moore have been appointed as Chief Scientific Officers and you are requested to help them to compute an optimal solution and to build a schedule of all accepted orders (starting time and completion time).

Small Example

Consider the following data set made of 6 orders J1,..., J6<tex2html_verbatim_mark> . For a given order, Jj<tex2html_verbatim_mark> , qj<tex2html_verbatim_mark> denotes the amount of steel required and dj<tex2html_verbatim_mark> is the associated due date.

Order qj<tex2html_verbatim_mark> dj<tex2html_verbatim_mark>
J1<tex2html_verbatim_mark> 6 8
J2<tex2html_verbatim_mark> 4 9
J3<tex2html_verbatim_mark> 7 15
J4<tex2html_verbatim_mark> 8 20
J5<tex2html_verbatim_mark> 3 21
J6<tex2html_verbatim_mark> 5 22

You can check by hand that all orders cannot be accepted and it's very unlikely you could find a solution with less than two rejected orders. Here is an optimal solution: Reject J1<tex2html_verbatim_mark> and J4<tex2html_verbatim_mark> , accept all other orders and process them as follows.

Accepted Order Starting Time Completion Time
J2<tex2html_verbatim_mark> 0 4
J3<tex2html_verbatim_mark> 4 11
J5<tex2html_verbatim_mark> 11 14
J6<tex2html_verbatim_mark> 14 19

Note that the production line is never idle.

Input

The input begins with a single positive integer on a line by itself indicating the number of the cases following, each of them as described below. This line is followed by a blank line, and there is also a blank line between two consecutive inputs.

Data Each test case is described by one input file that contains all the relevant data: The first line contains the number n<tex2html_verbatim_mark> of orders ( n<tex2html_verbatim_mark> can be as large as 800000 for some test cases). It is followed by n<tex2html_verbatim_mark> lines. Each of which describes an order made of two integer values: the amount of steel (in tons) required for the order (lower than 1000) and its due date (in seconds; lower than 2 x 106<tex2html_verbatim_mark> ).

Output

For each test case, the output must follow the description below. The outputs of two consecutive cases will be separated by a blank line.

You are required to compute an optimal solution and your program has to write the number of orders that are accepted.

Sample Input

1

6
7 15
8 20
6 8
4 9
3 21
5 22

Sample Output

4

Some Hints from Hogdson and Moore

  • Hogdson and Moore claim that it is optimal to sequence accepted orders in non-decreasing order of due dates.
  • They also claim that there is an optimal solution such that for any two orders Ju<tex2html_verbatim_mark> and Jv<tex2html_verbatim_mark> with qu > qv<tex2html_verbatim_mark> and du < dv<tex2html_verbatim_mark> , if Ju<tex2html_verbatim_mark> is accepted thenJv<tex2html_verbatim_mark> is also accepted.
  • Finally, Hogdson and Moore advise you to ``Keep the Customer Satisfied"

Keep the Customer Satisfied

Gee but it's great to be back home
Home is where I want to be.
I've been on the road so long my friend,
And if you came along
I know you couldn't disagree. It's the same old story
Everywhere I go,
I get slandered,
Libeled,
I hear words I never heard
In the bible
And I'm on step ahead of the shoe shine
Two steps away from the county line
Just trying to keep my customers satisfied,
Satisfied. Deputy sheriff said to me
Tell me what you come here for, boy.
You better get your bags and flee.
You're in trouble boy,
And you're heading into more.

©Simon & Garfunkel

解题思路:

首先按照截止时间的先后排序。对于任意两个任务a和b,如果a的截止时间在b之前,且a的加工时间比b长,那么接受了a订单必然要接受b订单。反过来呢,如果b的加工时间超过了截止时间,那么就找之前的订单,删掉加工时间最长的那个订单。这样接受的订单数没有变化,而总的加工时间变短了,为以后接受更多订单做准备。总要拒绝一些订单的,所以用优先队列维护q

代码:

#include <cstdio>
#include <queue>
#include <algorithm>
using namespace std;
const int MAX=;
int n,c;
struct node
{
int q,d;
friend bool operator<(node a,node b)
{
return a.q<b.q;
}
}a[MAX];
bool cmp(node a,node b)
{
return a.d<b.d;
}
void init()
{
scanf("%d",&n);
for(int i=;i<n;i++)
scanf("%d%d",&a[i].q,&a[i].d);
}
void slove()
{
priority_queue<node>Q;
sort(a,a+n,cmp);
int t=;c=;
for(int i=;i<n;i++)
{
t+=a[i].q;
c++;
Q.push(a[i]);
if(t>a[i].d)
{
t-=Q.top().q;
Q.pop();
c--;
}
} }
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
init();
slove();
printf("%d\n",c);
if(t) printf("\n");
}
return ;
}

高效算法——G - 贪心的更多相关文章

  1. 高效算法——E - 贪心-- 区间覆盖

    E - 贪心-- 区间覆盖 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=85904#problem/E 解题思路: 贪心思想, ...

  2. 高效算法——D 贪心,区间覆盖问题

    Given several segments of line (int the X axis) with coordinates [Li , Ri ]. You are to choose the m ...

  3. 集训第四周(高效算法设计)G题 (贪心)

    G - 贪心 Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu Submit Status Desc ...

  4. 深入N皇后问题的两个最高效算法的详解 分类: C/C++ 2014-11-08 17:22 117人阅读 评论(0) 收藏

    N皇后问题是一个经典的问题,在一个N*N的棋盘上放置N个皇后,每行一个并使其不能互相攻击(同一行.同一列.同一斜线上的皇后都会自动攻击). 一. 求解N皇后问题是算法中回溯法应用的一个经典案例 回溯算 ...

  5. CVPR2020论文介绍: 3D 目标检测高效算法

    CVPR2020论文介绍: 3D 目标检测高效算法 CVPR 2020: Structure Aware Single-Stage 3D Object Detection from Point Clo ...

  6. 高效算法——Most financial institutions 贪心 H

    H - 贪心 Crawling in process... Crawling failed Time Limit:3000MS     Memory Limit:0KB     64bit IO Fo ...

  7. 集训第四周(高效算法设计)L题 (背包贪心)

    Description   John Doe is a famous DJ and, therefore, has the problem of optimizing the placement of ...

  8. 集训第四周(高效算法设计)I题 (贪心)

    Description Shaass has n books. He wants to make a bookshelf for all his books. He wants the bookshe ...

  9. 集训第四周(高效算法设计)F题 (二分+贪心)

    Description   A set of n<tex2html_verbatim_mark> 1-dimensional items have to be packed in iden ...

随机推荐

  1. teamview centos 配置

    1.下载teamview centos版本,本人喜欢tar.gz版本,但是官网只有rpm版本,附件中即为官网下载的teamview11 官方下载地址:https://www.teamviewer.co ...

  2. GridView 无数据时,绑定提示

    private void BindData() { DataTable dt = DAO.RunSQLReturnDt(this.getsql()); int dtcount = dt.Rows.Co ...

  3. WPF Binding值转换器ValueConverter使用简介(二)-IMultiValueConverter

    注: 需要继承IMultiValueConverter接口,接口使用和IValueConverter逻辑相同. 一.MultiBinding+Converter 多值绑定及多值转换实例 当纵向流量大于 ...

  4. eclipse下:selenium+python自动化之Chrome driver

    1.下载chromedriver.exe文件: 2.下载的chromedriver.exe文件放置在chrome的安装目录下XXX\Chrome\Application\ ; 3.设置path环境变量 ...

  5. Deep Learning 学习随记(七)Convolution and Pooling --卷积和池化

    图像大小与参数个数: 前面几章都是针对小图像块处理的,这一章则是针对大图像进行处理的.两者在这的区别还是很明显的,小图像(如8*8,MINIST的28*28)可以采用全连接的方式(即输入层和隐含层直接 ...

  6. 由App的启动说起(转)

    The two most important days in your life are the day you are born and the day you find out why. -- M ...

  7. Problem 1108 - 淼·诺贝尔

    #include<iostream> #include<vector> #include<algorithm> using namespace std; struc ...

  8. SGU 220.Little Bishops(DP)

    题意: 给一个n*n(n<=10)的棋盘,放上k个主教(斜走),求能放置的种类总数. Solution: 一眼看上去感觉是状压DP,发现状态太多,没办法存下来... 下面是一个十分巧妙的处理: ...

  9. 原型链和new

    http://www.cnblogs.com/objectorl/archive/2010/01/11/Object-instancof-Function-clarification.html 构造器 ...

  10. css杂项,清除浮动

    在写HTML代码的时候,发现在Firefox等符合W3C标准的浏览器中,如果有一个DIV作为外部容器,内部的DIV如果设置了float样式,则外部的容器DIV因为内部没有clear,导致不能被撑开.看 ...