Calculate A * B.

Input

Each line will contain two integers A and B. Process to end of file.

Note: the length of each integer will not exceed 50000.

Output

For each case, output A * B in one line.

Sample Input

1
2
1000
2

Sample Output

2
2000
  
  唉,模板题,膜的邝斌的模板。
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; const double PI = acos(-1.0); struct complex{
double r,i;
complex(double r_=0.0,double i_=0.0)
{
r=r_;i=i_;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,i*b.r+r*b.i);
}
}; void Rader(complex *a,int len)
{
int k;
for(int i=,j=len/;i<len-;i++)
{
if(i<j)swap(a[i],a[j]);
k=len/;
while(j>=k)
{
j-=k;
k>>=;
}
j+=k;
}
} void FFT(complex *a,int len,int on)
{
Rader(a,len);
for(int h=;h<=len;h<<=)
{
complex wn(cos(-on**PI/h),sin(-on**PI/h));
for(int j=;j<len;j+=h)
{
complex w(,);
for(int k=j;k<j+h/;k++)
{
complex u=a[k];
complex v=a[k+h/]*w;
a[k]=u+v;
a[k+h/]=u-v;
w=w*wn;
}
}
}
if(on==-)
for(int i=;i<len;i++)
a[i].r/=len;
} const int maxn = ;
complex Array1[maxn],Array2[maxn];
char str1[maxn],str2[maxn];
int sum[maxn],len,len1,len2; int main()
{
while(~scanf("%s%s",str1,str2))
{
len1=strlen(str1);
len2=strlen(str2);
len=;
while(len<len1*||len<len2*)len<<=;
for(int i=;i<len1;i++)
Array1[i]=complex(str1[len1-i-]-'',);
for(int i=;i<len2;i++)
Array2[i]=complex(str2[len2-i-]-'',); for(int i=len1;i<len;i++)
Array1[i]=complex(,);
for(int i=len2;i<len;i++)
Array2[i]=complex(,); FFT(Array1,len,);
FFT(Array2,len,);
for(int i=;i<len;i++)
Array1[i]=Array1[i]*Array2[i];
FFT(Array1,len,-);
memset(sum,,sizeof(sum));
for(int i=;i<len;i++){
sum[i]+=(int)(Array1[i].r+0.5);
sum[i+]+=sum[i]/;
sum[i]%=;
}
int p=len;
while(!sum[p]&&p)p--;
for(;p!=-;p--)
printf("%d",sum[p]);
printf("\n");
}
return ;
}

  两个月后重打了一遍。

 #include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
using namespace std;
const int maxn=;
const double PI=acos(-1.0);
struct complex{
double r,i;
complex(double r_=0.0,double i_=0.0){
r=r_;i=i_;
}
complex operator +(complex a){
return complex(r+a.r,i+a.i);
}
complex operator -(complex a){
return complex(r-a.r,i-a.i);
}
complex operator *(complex a){
return complex(r*a.r-i*a.i,r*a.i+a.r*i);
}
}A[maxn],B[maxn]; void Rader(complex *a,int len){
int k;
for(int i=,j=len>>;i<len-;i++){
if(i<j)swap(a[i],a[j]);
k=len>>;
while(j>=k){
j-=k;
k>>=;
}
j+=k;
}
} void FFT(complex *a,int len,int on){
Rader(a,len);
for(int h=;h<=len;h<<=){
complex wn(cos(-on*PI*2.0/h),sin(-on*PI*2.0/h));
for(int j=;j<len;j+=h){
complex w(,);
for(int k=j;k<j+(h>>);k++){
complex x=a[k];
complex y=a[k+(h>>)]*w;
a[k]=x+y;
a[k+(h>>)]=x-y;
w=w*wn;
}
}
}
if(on==-)
for(int i=;i<len;i++)
a[i].r/=len;
return;
} char s[maxn],t[maxn];
int ans[maxn];
int main(){
while(~scanf("%s%s",s,t)){
int lens=strlen(s);
int lent=strlen(t),len=;
while(len<=lens+lent)len<<=;
memset(A,,sizeof(A));
memset(B,,sizeof(B));
for(int i=;i<lens;i++)
A[i].r=1.0*(s[lens-i-]-'');
for(int i=;i<lent;i++)
B[i].r=1.0*(t[lent-i-]-'');
FFT(A,len,);FFT(B,len,);
for(int i=;i<len;i++)
A[i]=A[i]*B[i];
FFT(A,len,-); memset(ans,,sizeof(ans));
int in=;
for(int i=;i<len;i++){
ans[i]=in+floor(A[i].r+0.5);
in=ans[i]/;
ans[i]%=;
}
int i;
for(i=len;i&&!ans[i];i--);
while(~i)printf("%d",ans[i]),i--;
printf("\n");
}
return ;
}

FFT(快速傅立叶变换):HDU 1402 A * B Problem Plus的更多相关文章

  1. 快速傅立叶变换&HDU 1402

    参考http://www.cnblogs.com/v-July-v/archive/2011/08/13/2214132.html <算导> 那么,更快速的多项式乘法就依赖于能否把一个系数 ...

  2. FFT快速傅立叶变换的工作原理

    实数DFT,复数DFT,FFTFFT是计算DFT的快速算法,但是它是基于复数的,所以计算实数DFT的时候需要将其转换为复数的格式,下图展示了实数DFT和虚数DFT的情况,实数DFT将时域中N点信号转换 ...

  3. spoj VFMUL FFT快速傅立叶变换模板题

    题意:求两个数相乘. 第一次写非递归的fft,因为一个数组开小了调了两天TAT. #include<iostream> #include<cstring> #include&l ...

  4. FFT快速傅立叶变换

    //最近突然发现博客园支持\(\rm\LaTeX\),非常高兴啊! 话说离省选只有不到五天了还在学新东西确实有点逗…… 切到正题,FFT还是非常神奇的一个东西,能够反直觉地把两个多项式相乘的时间复杂度 ...

  5. FFT快速傅立叶变换:解析wav波频图、Time Domain、Frequency Domain

    您好,此教程将教大家使用scipy.fft分析wav文件的波频图.Time Domain.Frequency Domain. 实际案例:声音降噪,去除高频. 结果: 波频图: Time Domain:

  6. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  7. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

  8. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

  9. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

随机推荐

  1. SQL Server 2008 安装指南

    一.安装需求: 1.硬件需求条件 硬件 需求 处理器 最低:1.4 GHz(x64处理器)注意:Windows Server 2008 for Itanium-Based Systems 版本需要In ...

  2. URAL 2032 - Conspiracy Theory and Rebranding【本源勾股数组】

    [题意] 给出三角形的三个边长,均是10^7以内的整数,问三角形的三个角的坐标是否能均是整数,输出其中任意一个解. [题解] 一开始想的是枚举一条边的横坐标,然后通过勾股定理以及算角度求出其他点的坐标 ...

  3. 11月15日jquery学习笔记

    1.属性 jQuery对象是类数组,拥有length属性和介于0~length-1之间的数值属性,可以用toArray()方法将jQuery对象转化为真实数组. selector属性是创建jQuery ...

  4. jquery几个常用的demo

    新建两个页面.一个叫做  ---- demo1.js------- 一个叫做 ----- demo1.html----- 代码分别如下 <!DOCTYPE html> <html l ...

  5. SQL:42601

    以前遇到SQL中触发器的问题, 添加一个字段后,发现以前的程序的SQL报错 看了下表定义,有这样的一行代码 CREATE TRIGGER chintai_keiyaku_audit AFTER INS ...

  6. 基于slf4j的log4j实战

    参考文档如下: http://blog.csdn.net/anialy/article/details/8529188 slf4j是接口,基于门面模式,可以实现log4j和logback 参考文档如下 ...

  7. MongoDB_1

    突然想去看下MongoDB的东西,于是有了这篇文章.其实很早以前就看过一些关于NoSql的文章,还记得当时里面有介绍MongoDB的,多瞅了2眼,并且在Window下安装了MongoDB的驱动,小玩了 ...

  8. 网站如何防Session冒名顶替和cookie防篡改

    做网站难免要面对安全性的问题,诸如sql注入拉,cookie冒名拉,等等,sql注入算是老生常谈,翻翻旧账有不少优秀的帖子在说明这个问题,所以我们来说说Session冒名顶替的风险以及应对的办法. 首 ...

  9. C# 多线程、结构体

    struct IpAndPort { public string Ip; public int Port; } private void Form1_Load(object sender, Event ...

  10. mysql基础操作整理(一)

    显示当前数据库 mysql> select database(); +------------+ | database() | +------------+ | test | +-------- ...