Inheritance - SGU 129(线段与多边形相交的长度)
题目大意:给一个凸多边形(点不是按顺序给的),然后计算给出的线段在这个凸多边形里面的长度,如果在边界不计算。
分析:WA2..WA3...WA4..WA11...WA的无话可说,总之细节一定考虑清楚,重合的时候一定是0
代码如下:
=========================================================================================================
#include<stdio.h>
#include<math.h>
#include<algorithm>
#include<iostream>
using namespace std; const int MAXN = ;
const double EPS = 1e-;
const double FarX = 4e4+; int Sign(double x)
{
if(x > EPS)return ;
if(fabs(x) < EPS)return ;
return -;
}
struct point
{
double x, y;
point(double x=, double y=):x(x),y(y){}
point operator - (const point &t)const{
return point(x-t.x, y-t.y);
}
bool operator == (const point &t)const{
return Sign(x-t.x) == && Sign(y-t.y) == ;
}
double operator ^(const point &t)const{
return x*t.y - y*t.x;
}
double operator *(const point &t)const{
return x*t.x + y*t.y;
}
};
double Dist(point t1, point t2)
{
return sqrt((t1-t2)*(t1-t2));
}
struct segment
{
point S, E;
double a, b, c;///ax + by = c; segment(point S=, point E=):S(S), E(E){
a = S.y - E.y;
b = E.x - S.x;
c = E.x*S.y - S.x*E.y;
}
int Inter(const segment &tmp)const{
int t1 = Sign((S-E)^(tmp.S-E));
int t2 = Sign((S-E)^(tmp.E-E)); if(t1 == && t2 == )
return -; if(t1*t2 == -)
return ;
if(abs(t1+t2) == )///如果完全相交或者有一点相交,不考虑重合
return ;
return false;
}
point crossNode(const segment &tmp)const
{///两条线段的交点
point result;
result.x = (c*tmp.b-tmp.c*b) / (a*tmp.b-tmp.a*b);
result.y = (c*tmp.a-tmp.c*a) / (b*tmp.a-tmp.b*a); return result;
}
bool OnSeg(const point &p)
{///判断点是否在线段上
if(Sign((S-E)^(p-E)) == )
if(Sign((p.x-S.x)*(p.x-E.x)) <= )
if(Sign((p.y-S.y)*(p.y-E.y)) <= )
return true;
return false;
}
};
struct Polygon
{
int N;///有N个点
point vertex[MAXN]; int Point_In_Poly(const point &p)
{///点在多边形里面1,还是外面-1,还是边上 0
segment ray(p, point(FarX, p.y));
int cnt = ; for(int i=; i<N; i++)
{
segment L(vertex[i], vertex[i+]); if(L.OnSeg(p))
return ; if(ray.OnSeg(L.S))
{
if(L.E.y-L.S.y > EPS)
cnt ++;
}
else if(ray.OnSeg(L.E))
{
if(L.S.y-L.E.y > EPS)
cnt ++;
}
else if(L.Inter(ray)== && ray.Inter(L)==)
cnt++;
} if(cnt % )
return ;
return -;
}
double Seg_In_Poly(const segment &L1)
{///线段与多边形相交的长度,先求出线段与多边形有几个交点
point p[];
int k=; for(int i=; i<N; i++)
{
segment L2(vertex[i], vertex[i+]); if(L1.Inter(L2) == - && L2.Inter(L1) == -)
return ; if(k< && L1.Inter(L2) && L2.Inter(L1))
{
point t = L1.crossNode(L2);
if(!k || !(p[] == t) )
p[k++] = t;
}
} double len=; if(k == )
{///有两个不同的交点
len = Dist(p[], p[]);
}
else if(k == )
{///有一个交点,判断哪个端点在多边形内
if(Point_In_Poly(L1.S) == )
len = Dist(p[], L1.S);
else if(Point_In_Poly(L1.E) == )
len = Dist(p[], L1.E);
}
else if(Point_In_Poly(L1.S) == )
{///没有交点的时候,判断线段是否在多边形内
len = Dist(L1.S, L1.E);
} return len;
}
};
Polygon poly; bool cmp(point t1, point t2)
{
return Sign((t2-poly.vertex[])^(t1-poly.vertex[])) < ;
} int main()
{
int i, M, ki=; scanf("%d", &poly.N); for(i=; i<poly.N; i++)
{
scanf("%lf%lf", &poly.vertex[i].x, &poly.vertex[i].y);
if(poly.vertex[ki].y > poly.vertex[i].y ||
(poly.vertex[ki].y == poly.vertex[i].y && poly.vertex[ki].x > poly.vertex[i].x) )
ki = i;
} swap(poly.vertex[], poly.vertex[ki]);
sort(poly.vertex+, poly.vertex+poly.N, cmp);
poly.vertex[poly.N] = poly.vertex[]; scanf("%d", &M); while(M--)
{
point A, B; scanf("%lf%lf%lf%lf", &A.x, &A.y, &B.x, &B.y);
segment L(A, B);
printf("%.6f\n",poly.Seg_In_Poly(L));
} return ;
}
/**
6
1 2
2 1
2 3
3 1
3 3
4 2
200
1 1 4 10
**/
Inheritance - SGU 129(线段与多边形相交的长度)的更多相关文章
- dtIntersectSegmentPoly2D 2D上的线段与多边形相交计算 产生结果:是否相交,线段跨越的开始和结束百分比,相交的边
dtIntersectSegmentPoly2D(startPos, endPos, verts, nv, tmin, tmax, segMin, segMax): http://geomalgori ...
- Snake - SGU 128(构造多边形)
题目大意:有N个点,如果可以使用这N个点连接,连接的时候任意两条边要成直角,任意边都要平行于x轴或者y轴,并且不能出现跨立相交,最终组成一个闭合的多边形,求出来这个多边形的最小长度. 分析:容易证明这 ...
- HDU 1558 Segment set (并查集+线段非规范相交)
题目链接 题意 : 如果两个线段相交就属于同一集合,查询某条线段所属集合有多少线段,输出. 思路 : 先判断与其他线段是否相交,然后合并. #include <cstdio> #inclu ...
- 线段和矩形相交 POJ 1410
// 线段和矩形相交 POJ 1410 // #include <bits/stdc++.h> #include <iostream> #include <cstdio& ...
- 判断线段和直线相交 POJ 3304
// 判断线段和直线相交 POJ 3304 // 思路: // 如果存在一条直线和所有线段相交,那么平移该直线一定可以经过线段上任意两个点,并且和所有线段相交. #include <cstdio ...
- Geometric Shapes (poj3449多边形相交)
题意:给你一些多边形的点,判断每个多边形和那些多边形相交,编号按照字典序输出 思路:枚举每个多边形的每条边看是否相交,这里的相交是包括端点的,关键是给你正方形不相邻两个点求另外两个点怎么求,长方形给你 ...
- hdu 5130(2014广州 圆与多边形相交模板)
题意:一个很多个点p构成的多边形,pb <= pa * k时p所占区域与多边形相交面积 设p(x,y), (x - xb)^2+(y - yb)^2 / (x - xa)^2+(y ...
- hdu3340 线段树+多边形
Rain in ACStar Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) T ...
- POJ_3304_Segments_线段判断是否相交
POJ_3304_Segments_线段判断是否相交 Description Given n segments in the two dimensional space, write a progra ...
随机推荐
- 如何在swift中实现oc中的分类
在oc中为了增强已有类的功能,我们经常使用分类.使用分类,我们可以在不破坏原有类的结构的前提下,对原有类进行模块化的扩展. 但是在swift中没有分类这种写法了.相对应的是swift中只有扩展(Ext ...
- angularjs跨域调取webservice
1.配置 web.config <webServices> <!--必须添加--> <protocols> <add name="HttpGet&q ...
- 界面信息获取库的封装,记有爱UI助手的诞生
距离上次写文章已经过去了10个月,这次把我最近做的一个东西的一些心得写下来吧. 上一篇文章写了MSAA技术对于QQ界面信息获取的相关知识,近一段时间我把这个技术包括一些其他的功能做了一个封装并准备公开 ...
- python细节
1.assert 断言语句,可判断一句话真假,若为假会抛出AssertionError. eg. assert 1==1 assert 1==2则AssertionError 2.单引号双引号 ...
- muduo网络库学习笔记(10):定时器的实现
传统的Reactor通过控制select和poll的等待时间来实现定时,而现在在Linux中有了timerfd,我们可以用和处理IO事件相同的方式来处理定时,代码的一致性更好. 一.为什么选择time ...
- HTTP 无法注册 URL http://+:80/Temporary_Listen_Addresses/92819ef8-81ea-4bd9-
今天在练习wcf时,客户端调用服务端方法时出现异常.如下: 未处理System.ServiceModel.AddressAlreadyInUseException Message="HTTP ...
- classpath目录
WEB-INF/ 是资源目录, 客户端不能直接访问, 这话是没错,不过现在的IDE编译器在编译时会把src下的文件(是文件,不是.java)移到WEB-INF/classes下.不过值得注意的是,sp ...
- 面试cookie
cookie : 存储数据,当用户访问了某个网站(网页)的时候,我们就可以通过cookie来像访问者电脑上存储数据 1.不同的浏览器存放的cookie位置不一样,也是不能通用的 2.cookie的存储 ...
- [BZOJ 3888] [Usaco2015 Jan] Stampede 【线段树】
题目链接:BZOJ - 3888 题目分析 首先,计算出每个线段在 x 坐标 0 处出现的时间开始点和结束点,就转成了时间轴上的线段. 然后就是看每条线段是否被 y 比它小的线段完全覆盖了.注意求出的 ...
- 简单易学的机器学习算法——EM算法
简单易学的机器学习算法——EM算法 一.机器学习中的参数估计问题 在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系 ...