在实际的问题中,我们往往想要通过已有的数据来分析判断两个事件的发生是否有相关性。当然一个角度去寻找这两个事件内在的逻辑关系,这个角度需要深究两个事件的本质,而另外一个角度就是概率论提供的简单方法:基于两个事件发生的概率,我们就能够描述两个随机变量的相关性。

其实通过后边的计算式我们能够好的理解协方差为什么在一定程度上表征了两个随机变量的相关性,感性的来讲,E[XY]就是一个实际的X、Y同时发生的事件,而E[X]E[Y]则是我们为了进行比较给出的一个“假想X、Y独立”的模型,比较实际情况与理想情况的差值,显然差值越小,说明实际情况越是接近于我们假想的这个模型,X、Y的相关性就是越小。

协方差有着如下的运算性质:

(1)、(2)、(3)结合定义,比较好证,故在这里不再累述,主要讨论一下(4)的证明方法。

《A First Course in Probability》-chaper7-期望的性质-期望的性质-协方差的更多相关文章

  1. 【HDOJ6595】Everything Is Generated In Equal Probability(期望DP)

    题意:给定一个N,随机从[1,N]里产生一个n, 然后随机产生一个n个数的全排列,求出n的逆序数对的数量并累加ans, 然后随机地取出这个全排列中的一个子序列,重复这个过程,直到为空,求ans在模99 ...

  2. 【PRML读书笔记-Chapter1-Introduction】1.2 Probability Theory

    一个例子: 两个盒子: 一个红色:2个苹果,6个橘子; 一个蓝色:3个苹果,1个橘子; 如下图: 现在假设随机选取1个盒子,从中.取一个水果,观察它是属于哪一种水果之后,我们把它从原来的盒子中替换掉. ...

  3. hdu 5245 Joyful(期望的计算,好题)

    Problem Description Sakura has a very magical tool to paint walls. One day, kAc asked Sakura to pain ...

  4. Introduction to Probability (5) Continus random variable

    CONTINUOUS RANDOM VARIABLES AND PDFS  连续的随机变量,顾名思义.就是随机变量的取值范围是连续的值,比如汽车的速度.气温.假设我们要利用这些參数来建模.那么就须要引 ...

  5. POJ3682King Arthur's Birthday Celebration(数学期望||概率DP)

    King Arthur is an narcissist who intends to spare no coins to celebrate his coming K-th birthday. Th ...

  6. LightOj-1027 A Dangerous Maze(期望)

    You are in a maze; seeing n doors in front of you in beginning. You can choose any door you like. Th ...

  7. 【概率论】4-2:期望的性质(Properties of Expectation)

    title: [概率论]4-2:期望的性质(Properties of Expectation) categories: - Mathematic - Probability keywords: - ...

  8. 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part I)

    title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part I) categories: - Mathematic - Prob ...

  9. LightOJ 1248 Dice (III) (期望DP / 几何分布)

    题目链接:LightOJ - 1248 Description Given a dice with n sides, you have to find the expected number of t ...

随机推荐

  1. POJ_1088 滑雪(记忆型DP+DFS)

    Description Michael喜欢滑雪,这并不奇怪, 因为滑雪的确很刺激.可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你.Michael想知道 ...

  2. 校省选赛第一场A题Cinema题解

    今天是学校省选的第一场比赛,0战绩收工,死死啃着A题来做,偏偏一直WA在TES1. 赛后,才发现,原来要freopen("input.txt","r",stdi ...

  3. ubuntu14.04.1 LTS 64bits较快的更新源

    网上关于ubuntu更新源的帖子一大堆,但是我使用网易源的时候,执行sudo apt-get update命令的时候,总是在最后几步出现hash校验的问题,虽然没什么大的影响,但是对于患有强迫症晚期综 ...

  4. CoffeeScript飞一样的写javascript

    之前看到同事在使用coffeescript写js,当我看到那简介的coffee文件,就深深的被coffescript吸引了,简洁的语法,熟练之后会大大提升javascript的开发速度,写脚本也能像飞 ...

  5. BOM 之 location

    BOM 之 location它提供了与当前窗口中加载的文档有关的信息,还提供一些导航功能 .既是 window对象的属性,也是document对象的属性,就是说, window.location 和 ...

  6. 汤姆大叔的6道js题目

    汤姆大叔的6道javascript编程题题解 看汤姆大叔的博文,其中有篇(猛戳这里)的最后有6道编程题,于是我也试试,大家都可以先试试. 1.找出数字数组中最大的元素(使用Math.max函数) 1 ...

  7. 移动端日期控件 mobiscroll

    Mobiscroll是一个用于触摸设备(Android phones, iPhone, iPad, Galaxy Tab)的日期和时间选择器jQuery插件.可以让用户很方便的只需要滑动数字既可以选择 ...

  8. mount 挂载光盘

    mount作用 挂载光盘镜像文件.移动硬盘.U盘以及Windows网络共享和UNIX NFS网络共享 mount [-t vfstype] [-o options] device dir mount ...

  9. 配置nginx支持thinkphp框架

    因为nginx本身没有支持pathinfo,所以无法使用thinkphp框架,不过我们可以在配置里进行修改使其能够正常使用thinkphp. 1.修改配置支持pathinfo vi /etc/ngin ...

  10. silverlight中DataGrid数据高亮显示

    效果如图所示, <UserControl xmlns:controls="clr-namespace:System.Windows.Controls;assembly=System.W ...