【bzoj2287】[POJ Challenge]消失之物 背包dp
题目描述
ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN。 由于她的疏忽, 第 i 个物品丢失了。 “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” -- 这是经典的问题了。她把答案记为 Count(i, x) ,想要得到所有1 <= i <= N, 1 <= x <= M的 Count(i, x) 表格。
输入
第1行:两个整数 N (1 ≤ N ≤ 2 × 103) 和 M (1 ≤ M ≤ 2 × 103),物品的数量和最大的容积。
第2行: N 个整数 W1, W2, ..., WN, 物品的体积。
输出
一个 N × M 的矩阵, Count(i, x)的末位数字。
样例输入
3 2
1 1 2
样例输出
11
11
21
题解
dp
设f[x]表示恰好装满x体积时的方案数(没有限制),可以用01背包算法求出。这是总方案数。
然后考虑不选某物品的情况。
设g[x]为不选当前物品恰好装满x体积时的方案数。
当x小于w[i]时,i物品一定不会被选上,此时g[x]=f[x]。
当x大于等于w[i]时,i物品可能会被选上,直接求不选的情况比较困难。
我们可以换个思路,用总方案数-选的方案数得到不选的方案数。
总方案数及f[x],不选的方案数可以想为先不选i再最后把i选上,即g[x-w[i]]。
所以g[x]=f[x]-g[x-w[i]]。
最后输出g即可。
#include <cstdio>
int w[2010] , f[2010] , g[2010];
int main()
{
int n , m , i , j;
scanf("%d%d" , &n , &m);
f[0] = 1;
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &w[i]);
for(j = m ; j >= w[i] ; j -- ) f[j] = (f[j] + f[j - w[i]]) % 10;
}
for(i = 1 ; i <= n ; i ++ )
{
for(j = 0 ; j < w[i] ; j ++ ) g[j] = f[j];
for(j = w[i] ; j <= m ; j ++ ) g[j] = (f[j] - g[j - w[i]] + 10) % 10;
for(j = 1 ; j <= m ; j ++ ) printf("%d" , g[j]);
printf("\n");
}
return 0;
}
【bzoj2287】[POJ Challenge]消失之物 背包dp的更多相关文章
- [bzoj2287][poj Challenge]消失之物_背包dp_容斥原理
消失之物 bzoj-2287 Poj Challenge 题目大意:给定$n$个物品,第$i$个物品的权值为$W_i$.记$Count(x,i)$为第$i$个物品不允许使用的情况下拿到重量为$x$的方 ...
- bzoj2287 [POJ Challenge]消失之物
题目链接 少打个else 调半天QAQ 重点在47行,比较妙 #include<algorithm> #include<iostream> #include<cstdli ...
- BZOJ 2287: 【POJ Challenge】消失之物( 背包dp )
虽然A掉了但是时间感人啊.... f( x, k ) 表示使用前 x 种填满容量为 k 的背包的方案数, g( x , k ) 表示使用后 x 种填满容量为 k 的背包的方案数. 丢了第 i 个, 要 ...
- BZOJ2287: 【POJ Challenge】消失之物(背包dp)
题意 ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. “要使用剩下的 N - 1 物品装满容积为 x 的背包,有几种方法呢?” ...
- bzoj2287:[POJ Challenge]消失之物
思路:首先先背包预处理出f[x]表示所有物品背出体积为x的方案数.然后统计答案,利用dp. C[i][j]表示不用物品i,组成体积j的方案数. 转移公式:C[i][j]=f[j]-C[i][j-w[i ...
- BZOJ.2287.[POJ Challenge]消失之物(退背包)
BZOJ 洛谷 退背包.和原DP的递推一样,再减去一次递推就行了. f[i][j] = f[i-1][j-w[i]] + f[i-1][j] f[i-1][j] = f[i][j] - f[i-1][ ...
- POJ Challenge消失之物
Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 物品装满容积为 x ...
- 【bozj2287】【[POJ Challenge]消失之物】维护多值递推
(上不了p站我要死了) Description ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N - 1 ...
- 【BZOJ2287】【POJ Challenge】消失之物 背包动规
[BZOJ2287][POJ Challenge]消失之物 Description ftiasch 有 N 个物品, 体积分别是 W1, W2, ..., WN. 由于她的疏忽, 第 i 个物品丢失了 ...
随机推荐
- phpredis命令
<?php //redis //检查一个扩展是否已经加载.大小写不敏感. if (!function_exists('redis')) { echo '不支持 redis'; return ; ...
- 记6种php 加密解密方法
<?php function encryptDecrypt($key, $string, $decrypt){ if($decrypt){ $decrypted = rtrim(mcrypt_d ...
- ReentrantLock详解
ReentrantLock概述 ReentrantLock是Lock接口的实现类,可以手动的对某一段进行加锁.ReentrantLock可重入锁,具有可重入性,并且支持可中断锁.其内部对锁的控制有两种 ...
- python构造二维列表以及排序字典
1. 构造二维列表: 比如我现在需要一个100*100的二维列表: a = [] for i in range(100): a.append([]) for j in range(100): a[i] ...
- Python的scrapy之爬取boss直聘网站
在我们的项目中,单单分析一个51job网站的工作职位可能爬取结果不太理想,所以我又爬取了boss直聘网的工作,不过boss直聘的网站一次只能展示300个职位,所以我们一次也只能爬取300个职位. jo ...
- python快速改造:基础知识
改造"Hacking"并不同于破坏"cracking" python快速改造:基础知识 一行就是一行,不管多少,不用加分号 交互式python解释器可以当作计算 ...
- go学习笔记-面向对象(Methods, Interfaces)
面向对象(Methods, Interfaces) Method method是附属在一个给定的类型上的,他的语法和函数的声明语法几乎一样,只是在func后面增加了一个receiver(也就是meth ...
- 笔记-twisted-adbapi-scrapy
笔记-twisted-adbapi-scrapy-mysql 1. 异步插入mysql 在爬虫中需要insert到mysql,但有一个问题是在爬虫环境中commit的及时性与性能冲突. 一般 ...
- 1.使用pycharm搭建开发调试环境【转】
感谢 feigamesnb 第一步:安装python2.7环境 去https://www.python.org/downloads/下载windows版本的python,选择2.7版本,按提示安装,并 ...
- 【C#】 URL Protocol
[C#] URL Protocol 网页调用本地程序, 支持 Windows 下所有浏览器, 与浏览器插件对比实现简单,但判断是否调用成功时, 只有ie10以上有函数,其他浏览器得自己实现(用 ifr ...