题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2142

没给P的范围,但说 pi ^ ci<=1e5,一看就是扩展lucas。

学习材料:https://blog.csdn.net/clove_unique/article/details/54571216

     https://www.cnblogs.com/elpsycongroo/p/7620197.html

于是打(抄)了第一份exlucas的板子。那个把 pi的倍数 和 其余部分 分开处理的写法非常清楚!自己本来还想弄个pair的函数什么的。

num的范围?

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N=;
int num,m[N],pk[N];
ll mod,w[],a[N],x,y,ans,n,l;
void init(ll n)
{
for(ll i=;i*i<=n;i++)
if(n%i==)
{
m[++num]=i;pk[num]=;
while(n%i==)n/=i,pk[num]*=i;
}
if(n>)m[++num]=n,pk[num]=n;
}
ll pw(ll x,ll k,int mod)
{
ll ret=;x%=mod;while(k){if(k&)(ret*=x)%=mod;(x*=x)%=mod;k>>=;}return ret;
}
ll multi(ll n,int pi,int pk)
{
if(!n)return ;//
ll sum=;
for(int i=;i<pk;i++)if(i%pi)(sum*=i)%=pk;
sum=pw(sum,n/pk,pk);
for(int i=;i<=n%pk;i++)if(i%pi)(sum*=i)%=pk;
return sum*multi(n/pi,pi,pk)%pk;//n/pi!!
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b){x=;y=;return;}
exgcd(b,a%b,y,x);y-=a/b*x;
}
ll inv(ll n,ll mod){exgcd(n,mod,x,y);return (x+mod)%mod;}
ll exlucas(ll n,ll m,int pi,int pk)
{
if(n<m)return ;//
ll a=multi(n,pi,pk),b=multi(m,pi,pk),c=multi(n-m,pi,pk);
ll k=;
for(ll i=n;i;i/=pi)k+=i/pi;//阶乘的pi的个数
for(ll i=m;i;i/=pi)k-=i/pi;
for(ll i=n-m;i;i/=pi)k-=i/pi;
return a*inv(b,pk)%pk*inv(c,pk)%pk*pw(pi,k,pk)%pk;
}
ll crt()
{
ll M=,ret=;for(int i=;i<=num;i++)M*=pk[i];//pk,not m(pi)
for(int i=;i<=num;i++)
{
ll w=M/pk[i];
(ret+=w*inv(w,pk[i])*a[i])%=mod;
}
return (ret+mod)%mod;
}
ll excomb(ll n,ll k)
{
for(int i=;i<=num;i++)
a[i]=exlucas(n,k,m[i],pk[i]);
return crt();
}
int main()
{
scanf("%lld%lld%lld",&mod,&n,&l);ll tmp=;
init(mod);
for(int i=;i<=l;i++)scanf("%lld",&w[i]),tmp+=w[i];
if(n<tmp){printf("Impossible");return ;}
ans=;
for(int i=;i<=l;i++)
{
tmp=excomb(n,w[i]);
(ans*=tmp)%=mod;n-=w[i];
}
printf("%lld\n",ans);
return ;
}

bzoj 2142 礼物——扩展lucas模板的更多相关文章

  1. BZOJ - 2142 礼物 (扩展Lucas定理)

    扩展Lucas定理模板题(貌似这玩意也只能出模板题了吧~~本菜鸡见识鄙薄,有待指正) 原理: https://blog.csdn.net/hqddm1253679098/article/details ...

  2. BZOJ.2142.礼物(扩展Lucas)

    题目链接 答案就是C(n,m1) * C(n-m1,m2) * C(n-m1-m2,m3)...(mod p) 使用扩展Lucas求解. 一个很简单的优化就是把pi,pi^ki次方存下来,因为每次分解 ...

  3. BZOJ 2142: 礼物 [Lucas定理]

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1294  Solved: 534[Submit][Status][Discuss] ...

  4. 【刷题】BZOJ 2142 礼物

    Description 一年一度的圣诞节快要来到了.每年的圣诞节小E都会收到许多礼物,当然他也会送出许多礼物.不同的人物在小E 心目中的重要性不同,在小E心中分量越重的人,收到的礼物会越多.小E从商店 ...

  5. [BZOJ2142]礼物(扩展Lucas)

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2286  Solved: 1009[Submit][Status][Discuss] ...

  6. BZOJ 2142 礼物 组合数学 CRT 中国剩余定理

    2142: 礼物 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1450  Solved: 593[Submit][Status][Discuss] ...

  7. [bzoj2142]礼物(扩展lucas定理+中国剩余定理)

    题意:n件礼物,送给m个人,每人的礼物数确定,求方案数. 解题关键:由于模数不是质数,所以由唯一分解定理, $\bmod  = p_1^{{k_1}}p_2^{{k_2}}......p_s^{{k_ ...

  8. GYM100633J. Ceizenpok’s formula 扩展lucas模板

    J. Ceizenpok’s formula time limit per test 2.0 s memory limit per test 256 MB input standard input o ...

  9. BZOJ2142 礼物 扩展lucas 快速幂 数论

    原文链接http://www.cnblogs.com/zhouzhendong/p/8110015.html 题目传送门 - BZOJ2142 题意概括 小E购买了n件礼物,送给m个人,送给第i个人礼 ...

随机推荐

  1. OCI编程

    OCI编码步骤: .定义OCI数据结构 .连接到Oracle数据库:使用orlon函数调用还可以并发连接多个数据库. .打开光标.通过调用oopen来打开一个光标. .分析语句.使用oparse来分析 ...

  2. 【HackerRank】 Game Of Thrones - I

    King Robert has 7 kingdoms under his rule. He gets to know from a raven that the Dothraki are going ...

  3. java实现文件的压缩和解压

    java实现文件的压缩和解压 代码压缩实现 package com.hjh.demo.zip; import java.io.BufferedInputStream; import java.io.F ...

  4. 20165101 实验一 Java开发环境的熟悉

    #20165103 实验一 Java开发环境的熟悉 实验报告 封面 实验要求 第一部分 1.建立"自己学号exp1"的目录 2.在"自己学号exp1"目录下建立 ...

  5. docker calico安装

      第一步,安装etcd: 请参考以前的文章:  http://www.cnblogs.com/vincenshen/articles/8637949.html 第二步,下载calico: sudo ...

  6. Docker 数据管理-bind mount

    Use bind mounts Bind mounts have been around since the early days of Docker. Bind mounts have limite ...

  7. poj 1961 Period 【KMP-next前缀数组的应用】

    题目地址:http://poj.org/problem?id=1961 Sample Input 3 aaa 12 aabaabaabaab 0 Sample Output Test case #1 ...

  8. script标签加载js代码的一些知识

    1.script加载js代码是并行加载,顺序执行的,并且在加载和执行js时会阻塞浏览器渲染引擎, 2.defer和async属性添加过后,js的下载和执行就不会阻塞浏览器的渲染引擎了 3.defer会 ...

  9. Compaction介绍

    Compaction介绍 Compaction是buffer->flush->merge的Log-Structured Merge-Tree模型的关键操作,主要起到如下几个作用: 1)合并 ...

  10. 本地的html服务

    本地的调试的时候, 我们服务器返回的cookie就会变的失效,因为你的本地服务器的域名不太对.