3529: [Sdoi2014]数表

Time Limit: 10 Sec Memory Limit: 512 MB

Submit: 2151 Solved: 1080

[Submit][Status][Discuss]

Description

有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为

能同时整除i和j的所有自然数之和。给定a,计算数表中不大于a的数之和。

Input

输入包含多组数据。
输入的第一行一个整数Q表示测试点内的数据组数,接下来Q行,每行三个整数n,m,a(|a| < =10^9)描述一组数据。

Output

对每组数据,输出一行一个整数,表示答案模2^31的值。

Sample Input

2

4 4 3

10 10 5

Sample Output

20

148

HINT

1 < =N.m < =10^5 , 1 < =Q < =2×10^4

题解

一道比较恶心的题

我们要求的就是ans=∑Ni=1∑Mj=1g(gcd(i,j)),其中g(i)指i的约束和

利用莫比乌斯反演化简得:

ans=∑NT=1⌊NT⌋⌊MT⌋∗∑i|Tμ(Ti)g(i)

然后很常规:

前面部分分块

后面部分维护T的前缀和

维护g(i)的方式:枚举自然数i和i的倍数T,将i的倍数T对应的g(T)加上μ(Ti)g(i)

预处理复杂度O(nlogn)

但是题目要求我们求<=a的g(i),我们就将i按照g(i)排序,将询问按照a排序,每次询问前先将前缀和更新到不大于a,此时用树状数组维护前缀和

小技巧:对231取模,可以自然溢出,输出时&上231−1【化为正数】

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u]; k != -1; k = ed[k].nxt)
#define lbt(x) (x & -x)
using namespace std;
const int maxn = 100005,maxm = 20005,INF = 1000000000;
inline int RD(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 1) + (out << 3) + c - '0'; c = getchar();}
return out * flag;
}
int N = 0;
int A[maxn],now = 0,mu[maxn],prime[maxn],primei = 0,Qi,Ans[maxm];
bool isn[maxn];
struct Que{int n,m,a,id;}Q[maxm];
struct Gf{int i,v;}G[maxn];
inline bool operator <(const Que& a,const Que& b){return a.a < b.a;}
inline bool operator <(const Gf& a,const Gf& b){return a.v < b.v;}
inline void add(int u,int v){while (u <= N) A[u] += v,u += lbt(u);}
inline int query(int u){int ans = 0; while (u) ans += A[u],u -= lbt(u); return ans;}
void init(){
mu[1] = 1;
for (int i = 2; i <= N; i++){
if (!isn[i]) prime[++primei] = i,mu[i] = -1;
for (int j = 1; j <= primei && i * prime[j] <= N; j++){
isn[i * prime[j]] = true;
if (i % prime[j] == 0) {mu[i * prime[j]] = 0; break;}
mu[i * prime[j]] = -mu[i];
}
}
for (int i = 1; i <= N; i++)
for (int j = i; j <= N; j += i)
G[j].v += i;
REP(i,N) G[i].i = i;
sort(G + 1,G + 1 + N);
}
int main(){
Qi = RD();
REP(i,Qi) Q[i].n = RD(),Q[i].m = RD(),Q[i].a = RD(),Q[i].id = i,N = max(N,max(Q[i].n,Q[i].m));
sort(Q + 1,Q + 1 + Qi);
init();
REP(i,Qi){
while (now < N && G[now + 1].v <= Q[i].a){
now++;
for (int j = 1; G[now].i * j <= N; j++)
add(G[now].i * j,mu[j] * G[now].v);
}
int n = Q[i].n,m = Q[i].m; if (n > m) swap(n,m);
for (int j = 1,nxt; j <= n; j = nxt + 1){
nxt = min(n / (n / j),m / (m / j));
Ans[Q[i].id] += (n / j) * (m / j) * (query(nxt) - query(j - 1));
}
}
REP(i,Qi) printf("%d\n",Ans[i] & 0x7fffffff);
return 0;
}

BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】的更多相关文章

  1. bzoj3529: [Sdoi2014]数表 莫比乌斯反演

    题意:求\(\sum_{i=1}^n\sum_{j=1}^nf(gcd(i,j))(gcd(i,j)<=a),f(x)是x的因子和函数\) 先考虑没有限制的情况,考虑枚举gcd为x,那么有\(\ ...

  2. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演,离线)

    Description 有一张 n×m 的数表,其第 i 行第 j 列(1 <= i <= n, 1 <= j <= m)的数值为 能同时整除 i 和 j 的所有自然数之和.给 ...

  3. BZOJ3529: [Sdoi2014]数表(莫比乌斯反演 树状数组)

    题意 题目链接 Sol 首先不考虑\(a\)的限制 我们要求的是 \[\sum_{i = 1}^n \sum_{j = 1}^m \sigma(gcd(i, j))\] 用常规的套路可以化到这个形式 ...

  4. BZOJ3529: [Sdoi2014]数表 莫比乌斯反演_树状数组

    Code: #include <cstdio> #include <algorithm> #include <cstring> #define ll long lo ...

  5. bzoj [SDOI2014]数表 莫比乌斯反演 BIT

    bzoj [SDOI2014]数表 莫比乌斯反演 BIT 链接 bzoj luogu loj 思路 \[ \sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}a*[f[ ...

  6. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  7. 【bzoj3529】[Sdoi2014]数表 莫比乌斯反演+离线+树状数组

    题目描述 有一张n×m的数表,其第i行第j列(1 <= i <= n ,1 <= j <= m)的数值为能同时整除i和j的所有自然数之和.给定a,计算数表中不大于a的数之和. ...

  8. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  9. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  10. BZOJ 3529 [Sdoi2014]数表 (莫比乌斯反演+树状数组+离线)

    题目大意:有一张$n*m$的数表,第$i$行第$j$列的数是同时能整除$i,j$的所有数之和,求数表内所有不大于A的数之和 先是看错题了...接着看对题了发现不会做了...刚了大半个下午无果 看了Po ...

随机推荐

  1. 简易的vuex用法

    vuex是vue中用于管理全局状态的一个组件,用于不同组件之间的通信,下面将介绍它的简单用法 首先安装vue与vuex npm install vue npm install vuex --save ...

  2. 微信小程序中无刷新修改

    1.点击事件无刷新修改 原理:onload事件中是把这个分类和品牌的列表全部拿出来,拼接成数组的格式,在小程序中遍历的时候就要把小标(index)给绑定到左侧的品牌上,然后js中获取index的值,就 ...

  3. YII2.0学习一 Advanced 模板安装

    下载github上的完事安装包(本机环境使用Composer安装非常慢) https://github.com/yiisoft/yii2-app-advanced 解压到文件目录 wwwroot/sh ...

  4. PHP基础 (麦子学院 第二阶段)

    zendstudio 10.0破解版,新建完项目后,首先修改项目的编码方式,统一改成utf-8 (选中项目,再右键properties:Text file encoding).修改字体大小. apac ...

  5. is和==,编码补充

    一,is和==的区别: 1, 通过一个ID()可以查看到一个变量表示的值在内存中的地址.    s = 'alex' print(id(s)) # 4326667072 s = "alex& ...

  6. xshell怎样打印

    Xshell提供用本地打印机打印终端窗口文本的功能.在Xshell打印时可以沿用终端窗口使用的字体及颜色.且在页面设置对话框可以设置打印纸的边距. 如何设置打印纸的大小和方向: 1.打开xshell ...

  7. ORB-SLAM (四)tracking单目初始化

    单目初始化以及通过三角化恢复出地图点 单目的初始化有专门的初始化器,只有连续的两帧特征点均>100个才能够成功构建初始化器. ); 若成功获取满足特征点匹配条件的连续两帧,并行计算分解基础矩阵和 ...

  8. HTML布局的元素

    header 定义文档或节的页眉 nav 定义导航链接的容器 section 定义文档中的节 article 定义独立的自包含文章 aside 定义内容之外的内容(比如侧栏) footer 定义文档或 ...

  9. Log4net 根据日志类别保存到不同的文件,并按照日期生成不同文件名称

    <configuration> <configSections> <!--日志记录--> <section name="log4net" ...

  10. iOS开发中常见的一些异常

    iOS开发中常见的异常包括以下几种NSInvalidArgumentExceptionNSRangeExceptionNSGenericExceptionNSInternallnconsistency ...