BZOJ1040 骑士 基环外向树
1040: [ZJOI2008]骑士
Time Limit: 10 Sec Memory Limit: 162 MB
Submit: 6421 Solved: 2544
[Submit][Status][Discuss]
Description
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英。他们劫富济贫,惩恶扬善,受到社会各
界的赞扬。最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争。战火绵延五百里,在和平环境
中安逸了数百年的Z国又怎能抵挡的住Y国的军队。于是人们把所有的希望都寄托在了骑士团的身上,就像期待有一
个真龙天子的降生,带领正义打败邪恶。骑士团是肯定具有打败邪恶势力的能力的,但是骑士们互相之间往往有一
些矛盾。每个骑士都有且仅有一个自己最厌恶的骑士(当然不是他自己),他是绝对不会与自己最厌恶的人一同出
征的。战火绵延,人民生灵涂炭,组织起一个骑士军团加入战斗刻不容缓!国王交给了你一个艰巨的任务,从所有
的骑士中选出一个骑士军团,使得军团内没有矛盾的两人(不存在一个骑士与他最痛恨的人一同被选入骑士军团的
情况),并且,使得这支骑士军团最具有战斗力。为了描述战斗力,我们将骑士按照1至N编号,给每名骑士一个战
斗力的估计,一个军团的战斗力为所有骑士的战斗力总和。
Input
第一行包含一个正整数N,描述骑士团的人数。接下来N行,每行两个正整数,按顺序描述每一名骑士的战斗力
和他最痛恨的骑士。
Output
应包含一行,包含一个整数,表示你所选出的骑士军团的战斗力。
Sample Input
10 2
20 3
30 1
Sample Output
HINT
N ≤ 1 000 000,每名骑士的战斗力都是不大于 1 000 000的正整数。
设f[i][0],f[i][1]分别表示以i为根,不选/选i时的最大权值。则有转移式:
f[i][0]=leijia{ max(f[son(i)][0],f[son(i)][1]) }
f[i][1]=leijia{ f[son(i)][0] }
对于一个环,我们任选一条边拆开,然后以边的两点U,V为根做树形DP,再考虑边UV存在,有两种情况:
1) 强制不选U,V任意,环的贡献为以U做DP的f[U][0]
2) 强制不选V,U任意,环的贡献为以V做DP的f[V][0]
代码如下:
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
/*
注意题目中的有向边其实就是无向边。然后有多个联通块,每个联通块中有且仅有一个环。 如果没有环的话可以用树形DP,解决这个问题。 设f[i][0],f[i][1]分别表示以i为根,不选/选i时的最大权值。则有转移式: f[i][0]=leijia{ max(f[son(i)][0],f[son(i)][1]) } f[i][1]=leijia{ f[son(i)][0] } 对于一个环,我们任选一条边拆开,然后以边的两点U,V为根做树形DP,再考虑边UV存在,有两种情况: 1) 强制不选U,V任意,环的贡献为以U做DP的f[U][0] 2) 强制不选V,U任意,环的贡献为以V做DP的f[V][0]*/ typedef long long ll;
const int maxn = 1e6+;
struct edge{
int v,nxt;
}e[maxn<<];
int en=;
int front[maxn];
int n,w[maxn],vis[maxn];
ll f[maxn][];
//前向星建图
void add(int u,int v){
en++; //边++
e[en].v=v; //第en个节点指向v
e[en].nxt=front[u]; //nxt指向上一条以a为起点的边
front[u]=en; //表示以u为起点的最后输入的边的编号
}
int U,V,E;
void dfs(int u,int fa){
vis[u]=; //标记防止重复访问
//以该节点为根节点,开始遍历
//从该节点的编号开始,一路遍历
for(int i=front[u];i;i=e[i].nxt){
if((i^)==fa) {
continue;
}
int v=e[i].v;
if(vis[v]){
U=u;
V=v;
E=i;
continue;
}
dfs(v,i);
}
}
//树形DP
void treedp(int u,int fa,int ban){
f[u][]=w[u],f[u][]=;
for(int i=front[u];i;i=e[i].nxt){
if((i^)==fa) continue;
if(i==ban||(i^)==ban) continue;
int v=e[i].v;
treedp(v,i,ban);
f[u][]+=max(f[v][],f[v][]);
f[u][]+=f[v][];
}
}
int main(){
cin>>n;
int v;
for(int i=;i<=n;i++){
cin>>w[i]; //点权
cin>>v; // 连边
//建立无向图
add(i,v);
add(v,i);
}
ll ans=;
for(int i=;i<=n;i++){
if(!vis[i]){
dfs(i,-);
treedp(U,-,E); //强制不选U,V任意,环的贡献为以U做DP的f[U][0]
ll tmp=f[U][];
treedp(V,-,E); // 强制不选V,U任意,环的贡献为以V做DP的f[V][0]
tmp=max(tmp,f[V][]);
ans+=tmp; //得出最大贡献
}
}
cout<<ans<<endl;
return ;
}
BZOJ1040 骑士 基环外向树的更多相关文章
- [bzoj] 1040 骑士 || 基环外向树dp
原题 给出n个点n条边和每个点的点权,一条边的两个断点不能同时选择,问最大可以选多少. //图是一张基环外向树森林 是不是很像舞会啊- 就是多了一条边. 所以我们考虑一下对于一棵基环外向树,拆掉一条在 ...
- 1040: [ZJOI2008]骑士~基环外向树dp
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...
- HYSBZ 1040 骑士 (基环外向树DP)
Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发动了一场针对Z国的侵略战争.战火绵延五百里,在和平环境中 ...
- 初涉基环外向树dp&&bzoj1040: [ZJOI2008]骑士
基环外向树dp竟然如此简单…… Description Z国的骑士团是一个很有势力的组织,帮会中汇聚了来自各地的精英.他们劫富济贫,惩恶扬善,受到社会各界的赞扬.最近发生了一件可怕的事情,邪恶的Y国发 ...
- 【BZOJ1040】[ZJOI2008] 骑士(基环外向树DP)
点此看题面 大致题意: 给你一片基环外向树森林,如果选定了一个点,就不能选择与其相邻的节点.求选中点的最大权值和. 树形\(DP\) 此题应该是 树形\(DP\) 的一个升级版:基环外向树\(DP\) ...
- bzoj 1040 [ZJOI2008]骑士(基环外向树,树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1040 [题意] 给一个基环森林,每个点有一个权值,求一个点集使得点集中的点无边相连且权 ...
- [BZOJ 1040] [ZJOI2008] 骑士 【基环+外向树DP】
题目链接:BZOJ - 1040 题目分析 这道题目的模型就是一个图,不一定联通,每个连通块的点数等于边数. 每个连通块都是一个基环+外向树.即树上增加了一条边. 如果是树,就可以直接树形DP了.然而 ...
- codeforces 875F(基环外向树)
题意 有一个左边m个点,右边n个点的二分图(n,m<=1e5),左边每个点向右边恰好连两条权值相同的边. 求这个二分图的最优匹配 分析 对于这种二选一问题,即左边的a连向右边的b和c,权值为d, ...
- 洛谷 2921 记忆化搜索 tarjan 基环外向树
洛谷 2921 记忆化搜索 tarjan 传送门 (https://www.luogu.org/problem/show?pid=2921) 做这题的经历有点玄学,,起因是某个random题的同学突然 ...
随机推荐
- 人人都会设计模式:观察者模式--Observer
https://segmentfault.com/a/1190000012295887 观察者模式是抽像通知者和观察者,达到具体通知者跟具体观察者没有偶合.能达到不管是切换通知者,或者是切换观察者,都 ...
- 链栈的c++实现
2013-08-30 20:58 1876人阅读 评论(0) 收藏 举报 链栈是借用单链表实现的栈.其不同于顺序栈之处在于: 1.链栈的空间是程序运行期间根据需要动态分配的,机器内存是它的上限.而顺序 ...
- Python3爬虫(三)请求库的使用之urllib
Infi-chu: http://www.cnblogs.com/Infi-chu/ 一.urllib库: 1. 是Python内置的HTTP请求库 2. 在Python2中,由urllib和urll ...
- 48-Identity MVC:Model前后端验证
1-创建RegisterViewModel类 namespace MvcCookieAuthSample.ViewModel { public class RegisterViewModel { [R ...
- WPF中,如何将绑定源设置到单件实例
原文:WPF中,如何将绑定源设置到单件实例 WPF中,如何将绑定源设置到单件实例 周银辉 大概两个月前,曾有位朋友问我:如 ...
- Git使用之二:下载远程代码到本地指定文件夹
一.前期工作: 1.准备好本地的文件夹 2.如果后期需要继续以该文件夹进行同步的,则需要配置该文件夹,方法请参考之前的 Git使用之一:创建仓储和提交文件 二.用clone(克隆方式下载) 在本地下 ...
- 【python3.X】python练习笔记[1]
##三位数水仙花 ##方法一,小于指定数字的水仙花数 x=eval(input()) a,b,c = 0,0,0 for i in range (100,x,1): a=i%10 b=i//100 c ...
- 10-mongodb启动错误
1.error信息 python@ubuntu:~$ mongod --22T17:: I CONTROL [initandlisten] MongoDB starting : pid= port= ...
- THUSC 2018 游记
现在是闭幕式,我坐在西郊宾馆后排,开始写这篇游记. day0 早上从临汾坐火车到北京,12:52左右到了北京. 这次北京的地铁安检没有排成很长的队,但是在买票的时候我惊喜地发现我身上没有零钱--所幸北 ...
- JDBC剖析篇(2):JDBC之PreparedStatement
一次有人问我为什么要使用JDBC中的PreparedStatement,我说可以“防止SQL注入”,其他的却不能说出个一二三,现在来看看其中的秘密 参考文章: http://www.jb51.net/ ...