BZOJ 3566

树形$dp$ + 概率期望。

每一个点的贡献都是$1$,在本题中期望就等于概率。

发现每一个点要通电会在下面三件事中至少发生一件:

1、它自己通电了。

2、它的父亲给它通电了。

3、它的儿子给它通电了。

那么我们设$f_i$表示它的父亲给它通电的概率,$g_i$表示它的子树中给它通电的概率,那么最后的答案$\sum_{i = 1}^{n}f_i + g_i - f_i * g_i = \sum_{i = 1}^{n}1 - (1 - f_i) * (1 - g_i)$。

感觉好麻烦,直接把$f_i$和$g_i$设成不通电的概率好了。

先考虑计算$g$。

假设每个点$i$自己通电的概率是$a_i$,一条连接着$x$和$y$的边通电的概率是$val(x, y)$,那么$g_x = (1 - a_x)\prod_{y \in son(x)}(g_y + (1 - g_y) * (1 - val(x, y)))$。

因为如果一个点不从自己的子树中得到电,那么它自己一定没有电,然后对于每一个儿子,要么不通电,要么通了电但是这条边是不通电的,电量传递不上来。

然后考虑计算$f$,对于一对父子关系的点$(x, y)$,我们发现要么$x$不带电,要么$x$带了电但是这条边传递不过来,那么$x$不带电的概率$P = \frac{f_x * g_x}{g_y + (1 - g_y) * (1 - val(x, y))}$,

这时候我们默认$y$是不带电的,但是我们在计算$g_x$的时候多算了$y$的贡献,所以要除掉,然后$f_y = P + (1 - P) * (1 - val(x, y))$。

时间复杂度$O(n)$。

Code:

#include <cstdio>
#include <cstring>
using namespace std;
typedef double db; const int N = 5e5 + ; int n, tot = , head[N];
db a[N], f[N], g[N]; struct Edge {
int to, nxt;
db val;
} e[N << ]; inline void add(int from, int to, db val) {
e[++tot].to = to;
e[tot].val = val;
e[tot].nxt = head[from];
head[from] = tot;
} inline void read(int &X) {
X = ; char ch = ; int op = ;
for(; ch > '' || ch < ''; ch = getchar())
if(ch == '-') op = -;
for(; ch >= '' && ch <= ''; ch = getchar())
X = (X << ) + (X << ) + ch - ;
X *= op;
} void dfs1(int x, int fat) {
g[x] = - a[x];
for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(y == fat) continue;
dfs1(y, x);
g[x] *= (g[y] + ( - g[y]) * ( - e[i].val));
}
} void dfs2(int x, int fat, int inEdge) {
if(!fat) f[x] = 1.0;
else {
db p = g[fat] * f[fat] / (g[x] + ( - g[x]) * ( - e[inEdge].val));
f[x] = p + ( - p) * ( - e[inEdge].val);
} for(int i = head[x]; i; i = e[i].nxt) {
int y = e[i].to;
if(y == fat) continue;
dfs2(y, x, i);
}
} int main() {
// freopen("2.in", "r", stdin); read(n);
for(int x, y, v, i = ; i < n; i++) {
read(x), read(y), read(v);
db val = 1.0 * v / 100.0;
add(x, y, val), add(y, x, val);
}
for(int i = ; i <= n; i++) {
int v; read(v);
a[i] = 1.0 * v / 100.0;
} dfs1(, );
dfs2(, , ); /* for(int i = 1; i <= n; i++)
printf("%f ", f[i]);
printf("\n");
for(int i = 1; i <= n; i++)
printf("%f ", g[i]);
printf("\n"); */ db ans = ;
for(int i = ; i <= n; i++)
ans += ( - g[i] * f[i]); printf("%.6f\n", ans);
return ;
}

Luogu 4284 [SHOI2014]概率充电器的更多相关文章

  1. luogu P4284 [SHOI2014]概率充电器 期望 概率 树形dp

    LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自 ...

  2. 【题解】Luogu P4284 [SHOI2014]概率充电器

    原题传送门 我们知道,每个电器充电对充电电器数的贡献都是相等的1,所以若第\(i\)个电器有\(p_i\)的概率充电时 \[E=\sum_{i=1}^np_i\] 我们考虑如何求\(p_i\),根据树 ...

  3. P4284 [SHOI2014]概率充电器

    P4284 [SHOI2014]概率充电器 今天上课讲到的题orz,第一次做这种上下搞两次dp的题. g[i]表示i的子树(包括i)不给i充电的概率. f[i]表示i的父亲不给i充电的概率. g[]可 ...

  4. BZOJ 3566: [SHOI2014]概率充电器( 树形dp )

    通过一次dfs求出dp(x)表示节点x考虑了x和x的子树都没成功充电的概率, dp(x) = (1-p[x])π(1 - (1-dp[son])*P(edge(x, son)).然后再dfs一次考虑节 ...

  5. BZOJ 3566: [SHOI2014]概率充电器 [树形DP 概率]

    3566: [SHOI2014]概率充电器 题意:一棵树,每个点\(q[i]\)的概率直接充电,每条边\(p[i]\)的概率导电,电可以沿边传递使其他点间接充电.求进入充电状态的点期望个数 糖教题解传 ...

  6. BZOJ3566: [SHOI2014]概率充电器 树形+概率dp

    3566: [SHOI2014]概率充电器 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 1888  Solved: 857[Submit][Stat ...

  7. 洛谷 P4284 [SHOI2014]概率充电器 解题报告

    P4284 [SHOI2014]概率充电器 题目描述 著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米级加工技术,实现元件与导线能否通电完 ...

  8. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  9. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

随机推荐

  1. 接口测试基础——第4篇logging模块

    Logging:日志记录是为了跟踪记录软件运行时,发生的事件,包括出错,提示信息等等. log日志级别:日志级别大小关系为:CRITICAL > ERROR > WARNING > ...

  2. BZOJ5337 [TJOI2018]str

    题意 小豆参加了生物实验室.在实验室里,他主要研究蛋臼质.他现在研究的蛋臼质是由k个氨基酸按一定顺序构成的.每一个氨基酸都可能有a种碱基序 列si_j 构成.现在小豆有一个碱基串s,小豆想知道在这个碱 ...

  3. bzoj 3796 Mushroom追妹纸——后缀数组

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3796 长度一般都是 1e5 ,看这个是 5e4 ,一看就是把两个串接起来做. 自己本来想的是 ...

  4. ubuntu 源更新(sources.list)

    首先备份源列表: sudo cp /etc/apt/sources.list /etc/apt/sources.list_backup 而后用gedit或其他编辑器打开(也可以复制到Windows下打 ...

  5. 【转】理解JMeter聚合报告(Aggregate Report)

    Aggregate Report 是 JMeter 常用的一个 Listener,中文被翻译为“聚合报告”.今天再次有同行问到这个报告中的各项数据表示什么意思,顺便在这里公布一下,以备大家查阅. 如果 ...

  6. 乘积最大(线性dp)

    乘积最大 时间限制: 1 Sec  内存限制: 128 MB提交: 4  解决: 4[提交][状态][讨论版][命题人:quanxing] 题目描述 今年是国际数学联盟确定的“2000——世界数学年” ...

  7. zabbix短信监控

    [ ] zabbix-短信报警(参考http://hanyun.blog.51cto.com/1060170/1604918 ) [ ] zabbix-电话报警(参考http://dl528888.b ...

  8. oracle删除多个分区表

    declare v_date date; v_part_name varchar(); begin v_date := date'2015-2-4'; while v_date >= date' ...

  9. How to Change Master Page @ Run-time

    This tip will give complete knowledge of how to change master page, render controls and accessing it ...

  10. leetcode682

    class Solution { public: int calPoints(vector<string>& ops) { stack<int> ST; ; for ( ...