实验要求:

Objective:

To know how to implement image enhancement for color images by histogram processing. Note that the definition of histogram for color images differs from that of histogram for gray images.

Main requirements:

Ability of programming with C, C++, or Matlab.

Instruction manual:

(a) Download the dark-stream color picture in Fig. 6.35 (this image is labeled Fig. 6.35(05) in the image gallery for Chapter 6). Convert the image to RGB (see comments at the beginning of Project 06-01). Histogram-equalize the R, G, and B images separately using the histogram-equalization program and convert the image back to jpg format.

(b) Form an average histogram from the three histograms in (a) and use it as the basis to obtain a single histogram equalization intensity transformation function. Apply this function to the R, G, and B components individually, and convert the results to jpg. Compare and explain the differences in the jpg images in (a) and (b).

本实验是对彩色图像进行直方图均衡化处理。其中,我分了两种方式对彩色图像进行处理。一种是对图像的R、G、B三个彩色分量进行直方图均衡化,另一种是将图像从RGB颜色空间转换到HSI颜色空间,使用直方图均衡化单独处理亮度I分量,随后将图像从HSI空间转换回到RGB颜色空间。对比两种处理方法的结果。

实验代码:

%%
close all;
clc;
clear all; %%
img = imread('Fig6.35(5).jpg');
figure
subplot(1,3,1);
imshow(img);
title('original image'); %% 对RGB3个通道的灰度值分别做直方图均衡化,然后再合为一幅新的图像
R = img(:, :, 1);
G = img(:, :, 2);
B = img(:, :, 3); A = histeq(R);
B = histeq(G);
C = histeq(B); img1 = cat(3, A, B, C); subplot(1,3,2);
imshow(img1);
title('histogram-equalization 1'); %% 先将RGB格式的图像转换为HSI格式的图像,然后再对亮度I做直方图均衡化,紧接着转换成RGB格式的图像 img_hsi = rgb2hsi(img);
img_hsi_i = img_hsi(:, :, 3);
img_hsi_I = histeq(img_hsi_i);
img_hsi(:, :, 3) = img_hsi_I;
img2 = hsi2rgb(img_hsi); subplot(1,3,3);
imshow(img2);
title('histogram-equalization 2');

补充:

程序中使用的一些函数,RGB和HSI颜色空间之间相互转换的程序:

hsi2rgb()函数:

function rgb = hsi2rgb(hsi)
%HSI2RGB Converts an HSI image to RGB.
% RGB = HSI2RGB(HSI) converts an HSI image to RGB, where HSI is
% assumed to be of class double with:
% hsi(:, :, 1) = hue image, assumed to be in the range
% [0, 1] by having been divided by 2*pi.
% hsi(:, :, 2) = saturation image, in the range [0, 1].
% hsi(:, :, 3) = intensity image, in the range [0, 1].
%
% The components of the output image are:
% rgb(:, :, 1) = red.
% rgb(:, :, 2) = green.
% rgb(:, :, 3) = blue. % Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
% Digital Image Processing Using MATLAB, Prentice-Hall, 2004
% $Revision: 1.5 $ $Date: 2003/10/13 01:01:06 $ % Extract the individual HSI component images.
H = hsi(:, :, 1) * 2 * pi;
S = hsi(:, :, 2);
I = hsi(:, :, 3); % Implement the conversion equations.
R = zeros(size(hsi, 1), size(hsi, 2));
G = zeros(size(hsi, 1), size(hsi, 2));
B = zeros(size(hsi, 1), size(hsi, 2)); % RG sector (0 <= H < 2*pi/3).
idx = find( (0 <= H) & (H < 2*pi/3));
B(idx) = I(idx) .* (1 - S(idx));
R(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx)) ./ ...
cos(pi/3 - H(idx)));
G(idx) = 3*I(idx) - (R(idx) + B(idx)); % BG sector (2*pi/3 <= H < 4*pi/3).
idx = find( (2*pi/3 <= H) & (H < 4*pi/3) );
R(idx) = I(idx) .* (1 - S(idx));
G(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 2*pi/3) ./ ...
cos(pi - H(idx)));
B(idx) = 3*I(idx) - (R(idx) + G(idx)); % BR sector.
idx = find( (4*pi/3 <= H) & (H <= 2*pi));
G(idx) = I(idx) .* (1 - S(idx));
B(idx) = I(idx) .* (1 + S(idx) .* cos(H(idx) - 4*pi/3) ./ ...
cos(5*pi/3 - H(idx)));
R(idx) = 3*I(idx) - (G(idx) + B(idx)); % Combine all three results into an RGB image. Clip to [0, 1] to
% compensate for floating-point arithmetic rounding effects.
rgb = cat(3, R, G, B);
rgb = max(min(rgb, 1), 0);

rgb2hsi()函数:

function hsi = rgb2hsi(rgb)
%RGB2HSI Converts an RGB image to HSI.
% HSI = RGB2HSI(RGB) converts an RGB image to HSI. The input image
% is assumed to be of size M-by-N-by-3, where the third dimension
% accounts for three image planes: red, green, and blue, in that
% order. If all RGB component images are equal, the HSI conversion
% is undefined. The input image can be of class double (with values
% in the range [0, 1]), uint8, or uint16.
%
% The output image, HSI, is of class double, where:
% hsi(:, :, 1) = hue image normalized to the range [0, 1] by
% dividing all angle values by 2*pi.
% hsi(:, :, 2) = saturation image, in the range [0, 1].
% hsi(:, :, 3) = intensity image, in the range [0, 1]. % Copyright 2002-2004 R. C. Gonzalez, R. E. Woods, & S. L. Eddins
% Digital Image Processing Using MATLAB, Prentice-Hall, 2004
% $Revision: 1.5 $ $Date: 2005/01/18 13:44:59 $ % Extract the individual component images.
rgb = im2double(rgb);
r = rgb(:, :, 1);
g = rgb(:, :, 2);
b = rgb(:, :, 3); % Implement the conversion equations.
num = 0.5*((r - g) + (r - b));
den = sqrt((r - g).^2 + (r - b).*(g - b));
theta = acos(num./(den + eps)); H = theta;
H(b > g) = 2*pi - H(b > g);
H = H/(2*pi); num = min(min(r, g), b);
den = r + g + b;
den(den == 0) = eps;
S = 1 - 3.* num./den; H(S == 0) = 0; I = (r + g + b)/3; % Combine all three results into an hsi image.
hsi = cat(3, H, S, I);

程序运行结果:

数字图像处理实验(16):PROJECT 06-03,Color Image Enhancement by Histogram Processing 标签: 图像处理MATLAB 2017的更多相关文章

  1. 数字图像处理实验(总计23个)汇总 标签: 图像处理MATLAB 2017-05-31 10:30 175人阅读 评论(0)

    以下这些实验中的代码全部是我自己编写调试通过的,到此,最后进行一下汇总. 数字图像处理实验(1):PROJECT 02-01, Image Printing Program Based on Half ...

  2. Win8Metro(C#)数字图像处理--2.16图像浮雕效果

    原文:Win8Metro(C#)数字图像处理--2.16图像浮雕效果  [函数名称] 图像浮雕效果函数ReliefProcess(WriteableBitmap src) [函数代码]       ...

  3. 数字图像处理实验(5):Proj03-01 ~ Proj03-06 标签: 图像处理matlab 2017-04-30 10:39 184人阅读

    PROJECT 03-01 : Image Enhancement Using Intensity Transformations 实验要求: Objective To manipulate a te ...

  4. android 1.6 launcher研究之自定义ViewGroup (转 2011.06.03(二)——— android 1.6 launcher研究之自定义ViewGroup )

    2011.06.03(2)——— android 1.6 launcher研究之自定义ViewGroup2011.06.03(2)——— android 1.6 launcher研究之自定义ViewG ...

  5. 数字图像处理实验(17):PROJECT 06-04,Color Image Segmentation 标签: 图像处理MATLAB 2017-05-27 21:13

    实验报告: Objective: Color image segmentation is a big issue in image processing. This students need to ...

  6. 数字图像处理实验(14):PROJECT 06-01,Web-Safe Colors 标签: 图像处理MATLAB 2017-05-27 20:45 116人阅读

    实验要求: Objective: To know what are Web-safe colors, how to generate the RGB components for a given jp ...

  7. 数字图像处理实验(10):PROJECT 05-01 [Multiple Uses],Noise Generators 标签: 图像处理MATLAB 2017-05-26 23:36

    实验要求: Objective: To know how to generate noise images with different probability density functions ( ...

  8. 数字图像处理实验(15):PROJECT 06-02,Pseudo-Color Image Processing 标签: 图像处理MATLAB 2017-05-27 20:53

    实验要求: 上面的实验要求中Objective(实验目的)部分是错误的. 然而在我拿到的大纲中就是这么写的,所以请忽视那部分,其余部分是没有问题的. 本实验是使用伪彩色强调突出我们感兴趣的灰度范围,在 ...

  9. 数字图像处理实验(12):PROJECT 05-03,Periodic Noise Reduction Using a Notch Filter 标签: 图像处理MATLAB 2017-0

    实验要求: Objective: To understand the principle of the notch filter and its periodic noise reducing abi ...

随机推荐

  1. loj #6138. 「2017 山东三轮集训 Day4」Right

    题目: 题解: 暴力一波 \(SG\) 函数可以发现这么一个规律: \(p\) 为奇数的时候 : \(SG(n) = n \% 2\) \(p\) 为偶数的时候 : \(SG(n) = n \% (p ...

  2. Bootstrap中时间(时间控件)的设计

    运用bootstrap的时间控件,生成时间选择器. 1.截图:有以下这些样式 10年视图        年视图         月视图         日视图         小时视图 2.视图设计: ...

  3. 为什么新生代内存需要有两个Survivor区?

    对于常见的GC算法,我们都应该知道,例如:标记清除算法.复制算法.标记整理算法等.标记清除算法由于回收之后存在大量的内存碎片,存在效率和空间问题!为了解决效率问题,引出了复制算法!熟悉GC算法的小伙伴 ...

  4. subline自定义快捷键

    由于感觉原始subline的运行快捷键ctrl+b不是很方便,尝试修改,方法如下: 打开首选项 --> 快捷键设置 Key Bindings -Default //这个表示系统默认的快捷键.Ke ...

  5. window下安装mysql

    参考地址: https://www.cnblogs.com/lmh2072005/p/5656392.html http://www.jb51.net/article/90302.htm 一.下载安装 ...

  6. VC++ MFC SQL ADO数据库访问技术使用的基本步骤及方法

    1.首先,要用#import语句来引用支持ADO的组件类型库(*.tlb),其中类型库可以作为可执行程序 (DLL.EXE等)的一部分被定位在其自身程序中的附属资源里,如:被定位在msado15.dl ...

  7. NOIP2005普及组第3题 采药 (背包问题)

    NOIP2005普及组第3题 采药 时间限制: 1 Sec  内存限制: 128 MB提交: 50  解决: 23[提交][状态][讨论版][命题人:外部导入] 题目描述 辰辰是个天资聪颖的孩子,他的 ...

  8. sublime3环境配置

    首先安装package control 按ctrl+`调出控制台,输入以下代码 import urllib.request,os; pf = 'Package Control.sublime-pack ...

  9. BugkuCTF WEB

    web2 打开链接,一大堆表情 查看源代码 得到 flag 文件上传测试 打开链接 选择 1 个 jpg 文件进行上传,用 burp 抓包改包 将 php 改为 jpg,发包 得到 flag 计算器 ...

  10. day8-心得

    1. Socket介绍 概念 A network socket is an endpoint of a connection across a computer network. Today, mos ...