hdu 5184(数学-卡特兰数)
Brackets
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 659 Accepted Submission(s): 170
● the empty sequence is a regular brackets sequence,
● if s is a regular brackets sequence, then (s) are regular brackets sequences, and
● if a and b are regular brackets sequences, then ab is a regular brackets sequence.
● no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:
(), (()), ()(), ()(())
while the following character sequences are not:
(, ), )(, ((), ((()
Now we want to construct a regular brackets sequence of length n, how many regular brackets sequences we can get when the front several brackets are given already.
The first line contains an integer n.
Then second line contains a string str which indicates the front several brackets.
Please process to the end of file.
[Technical Specification]
1≤n≤1000000
str contains only '(' and ')' and length of str is larger than 0 and no more than n.
()
4
(
6
()
2
2
For the first case the only regular sequence is ()().
For the second case regular sequences are (()) and ()().
For the third case regular sequences are ()()() and ()(()).
#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <algorithm>
#include <math.h>
using namespace std;
typedef long long LL;
const LL mod = ;
const int N = ;
char s[N];
LL f[N];
LL pow_mod(LL a,LL n){
LL ans = ;
while(n){
if(n&) ans = ans*a%mod;
a = a*a%mod;
n>>=;
}
return ans;
}
void init(){
f[] = f[] = ;
for(int i=;i<N;i++){
f[i] = f[i-]*i%mod;
}
}
LL C(LL n,LL m){
LL a = f[m]*f[n-m]%mod;
LL inv = pow_mod(a,mod-);
return f[n]*inv%mod;
}
int main()
{
init();
int n;
while(scanf("%d",&n)!=EOF){
scanf("%s",&s);
if(n%==){
printf("0\n");
continue;
}
int len = strlen(s);
int l=,r=;
bool flag = true;
for(int i=;i<len;i++){ ///已经加入的左括号必须不小于右括号
if(s[i]=='(') l++;
if(s[i]==')') r++;
if(l<r) {
flag = false;
break;
}
}
if(!flag||l<r){
printf("0\n");
continue;
}
int m= n/;
l = m-l,r = m-r;
if(l<||r<){ ///防止这种情况 4 ((()
printf("0\n");
continue;
}
printf("%lld\n",(C(l+r,r)-C(l+r,r+)+mod)%mod);
}
return ;
}
hdu 5184(数学-卡特兰数)的更多相关文章
- hdu 5184 类卡特兰数+逆元
BC # 32 1003 题意:定义了括号的合法排列方式,给出一个排列的前一段,问能组成多少种合法的排列. 这道题和鹏神研究卡特兰数的推导和在这题中的结论式的推导: 首先就是如何理解从题意演变到卡特兰 ...
- hdu 5673 Robot 卡特兰数+逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Problem D ...
- hdu 4828 Grids 卡特兰数+逆元
Grids Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/Others) Problem D ...
- HDOJ 5184 Brackets 卡特兰数扩展
既求从点(0,0)仅仅能向上或者向右而且不穿越y=x到达点(a,b)有多少总走法... 有公式: C(a+b,min(a,b))-C(a+b,min(a,b)-1) /// 折纸法证明卡特兰数: h ...
- hdu2067 小兔的棋盘 DP/数学/卡特兰数
棋盘的一角走到另一角并且不越过对角线,卡特兰数,数据量小,可以当做dp求路径数 #include<stdio.h> ][]; int main() { ; ) { int i,j; lon ...
- 【HDU 5184】 Brackets (卡特兰数)
Brackets Problem Description We give the following inductive definition of a “regular brackets” sequ ...
- HDU 1023(卡特兰数 数学)
题意是求一列连续升序的数经过一个栈之后能变成的不同顺序的数目. 开始时依然摸不着头脑,借鉴了别人的博客之后,才知道这是卡特兰数,卡特兰数的计算公式是:a( n ) = ( ( 4*n-2 ) / ...
- hdu 4828 Grids(拓展欧几里得+卡特兰数)
题目链接:hdu 4828 Grids 题目大意:略. 解题思路:将上一行看成是入栈,下一行看成是出栈,那么执着的方案就是卡特兰数,用递推的方式求解. #include <cstdio> ...
- 【HDU 5370】 Tree Maker(卡特兰数+dp)
Tree Maker Problem Description Tree Lover loves trees crazily. One day he invents an interesting gam ...
随机推荐
- java05笔记
- CSS设计指南之伪类
伪类这个叫法源自它们与类相似,但实际上并没有类会附加到标记中的标签上.伪类分两种. UI伪类会在HTML元素处于某个状态时(比如鼠标指针位于链接上),为该元素应用CSS样式. 结构化伪类会在标记中存在 ...
- thinkphp include处理加载重复出现的html页面
在网站设计经常用大量使用的html模板,例如header(一般是menu层甚至还带有图片轮播).left(后台管理页面比较常见的导航).footer(结尾层,一般也是小型的menu),使用includ ...
- Failed with exception MetaException(message:javax.jdo.JDODataStoreException: Error(s) were found while auto-creating/validating the datastore for classes.
hive (db_emp)> load data local inpath '/opt/datas/emp.txt' into table emp_part partition(`date`=' ...
- 【ZJ选讲·BZOJ 5071】
小A的数字 有一串数字A1 ,A2,--,An,每次可以进行如下骚操作: 选择一个数字i,将(Ai-1,Ai,Ai+1)变为(Ai-1+Ai,-Ai,Ai+1+Ai), (特别地,若i=N,则( ...
- Nginx的火速蔓延与其并发性处理优势
Nginx是俄罗斯人编写的十分轻量级的HTTP服务器.Nginx,它的发音为“engine X”, 是一个高性能的HTTP和反向代理服务器,同时也是一个IMAP/POP3/SMTP 代理服务器.Ngi ...
- git使用笔记(七)版本回退和撤销
By francis_hao Nov 21,2016 从版本库初始化开始,每一步的撤销操作 添加第一个文件 在空的版本库中创建了一个文件并git add到了缓存区,这时候怎么撤销呢? 撤销单个文 ...
- 第116讲 boost::algorithm::string之替换和删除
http://www.360doc.com/content/16/0523/18/29304643_561672752.shtml
- oracle的group by问题
ORA-00979 不是 GROUP BY 表达式”这个错误,和我前面介绍的另外一个错误ORA-00937一样使很多初学oracle的人爱犯的. 我在介绍使用聚合函数中用group by来分组数据时特 ...
- scrapy 为每个pipeline配置spider
在settings.py里面配置pipeline,这里的配置的pipeline会作用于所有的spider,我们可以为每一个spider配置不同的pipeline, 设置 Spider 的 custom ...