题目链接:http://poj.org/problem?id=2125

思路:将最小点权覆盖转化为最小割模型,于是拆点建图,将点i拆成i,i+n,其中vs与i相连,边容量为w[i]-,i+n与vt相连,边容量为w[i]+,如果i,j有边相连,则i与j+n连边inf.从而跑最大流求解。对于输出解决放案,我们可以在残余网络中进行dfs,从vs出发,对于那些i<=n没有遍历到的点,说明被取走了,输出‘-’,对于那些i>n遍历到的点,说明之前有j->i的边(j<=n),vs->j不是最小割中的边,i是最小割中的点,输出‘+’。

copy一张图:

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define MAXN 222
#define MAXM 2222222
#define inf 1<<30 struct Edge{
int v,cap,next;
}edge[MAXM]; int n,m,NE,vs,vt,NV;
int head[MAXN]; void Insert(int u,int v,int cap)
{
edge[NE].v=v;
edge[NE].cap=cap;
edge[NE].next=head[u];
head[u]=NE++; edge[NE].v=u;
edge[NE].cap=;
edge[NE].next=head[v];
head[v]=NE++;
} int from[MAXN],to[MAXN];
bool map[MAXN][MAXN]; void Build()
{
NE=;
memset(head,-,sizeof(head));
vs=,vt=*n+,NV=*n+;
for(int i=;i<=n;i++){
Insert(vs,i,to[i]);
Insert(i+n,vt,from[i]);
for(int j=;j<=n;j++){
if(map[i][j])Insert(i,j+n,inf);
}
}
} int level[MAXN],gap[MAXN];
void bfs(int vt)
{
memset(level,-,sizeof(level));
memset(gap,,sizeof(gap));
level[vt]=;
gap[level[vt]]++;
queue<int>que;
que.push(vt);
while(!que.empty()){
int u=que.front();
que.pop();
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(level[v]<){
level[v]=level[u]+;
gap[level[v]]++;
que.push(v);
}
}
}
} int cur[MAXN],pre[MAXN]; int SAP(int vs,int vt)
{
bfs(vt);
memset(pre,-,sizeof(pre));
memcpy(cur,head,sizeof(head));
int maxflow=,aug=inf;
int u=pre[vs]=vs;
gap[]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[u]==level[v]+){
flag=true;
pre[v]=u;
u=v;
aug=min(aug,edge[i].cap);
if(v==vt){
maxflow+=aug;
for(u=pre[v];v!=vs;v=u,u=pre[u]){
edge[cur[u]].cap-=aug;
edge[cur[u]^].cap+=aug;
}
aug=inf;
}
break;
}
}
if(flag)continue;
int minlevel=NV;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap>&&level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==)break;
level[u]=minlevel+;
gap[level[u]]++;
u=pre[u];
}
return maxflow;
} bool mark[MAXN];
void dfs(int u)
{
mark[u]=true;
for(int i=head[u];i!=-;i=edge[i].next){
int v=edge[i].v;
if(!mark[v]&&edge[i].cap>)dfs(v);
}
} int main()
{
// freopen("1.txt","r",stdin);
int u,v,cnt;
while(~scanf("%d%d",&n,&m)){
for(int i=;i<=n;i++)scanf("%d",&from[i]);
for(int i=;i<=n;i++)scanf("%d",&to[i]);
memset(map,false,sizeof(map));
while(m--){
scanf("%d%d",&u,&v);
map[u][v]=true;
}
Build();
printf("%d\n",SAP(vs,vt));
memset(mark,false,sizeof(mark));
dfs(vs);
cnt=;
for(int i=;i<=*n;i++){
if(!mark[i]&&i<=n)cnt++;
else if(mark[i]&&i>n)cnt++;
}
printf("%d\n",cnt);
for(int i=;i<=*n;i++){
if(!mark[i]&&i<=n)printf("%d -\n",i);
else if(mark[i]&&i>n)printf("%d +\n",i-n);
}
}
return ;
}

poj 2125(最小割)的更多相关文章

  1. poj 3204(最小割--关键割边)

    Ikki's Story I - Road Reconstruction Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 7 ...

  2. POJ 3469 最小割 Dual Core CPU

    题意: 一个双核CPU上运行N个模块,每个模块在两个核上运行的费用分别为Ai和Bi. 同时,有M对模块需要进行数据交换,如果这两个模块不在同一个核上运行需要额外花费. 求运行N个模块的最小费用. 分析 ...

  3. POJ 2125 最小点权覆盖集(输出方案)

    题意:给一个图(有自回路,重边),要去掉所有边,规则:对某个点,可以有2种操作:去掉进入该点 的所有边,也可以去掉出该点所有边,(第一种代价为w+,第二种代价为w-).求最小代价去除所有边. 己思:点 ...

  4. 网络流 poj 3308 最小割

    t个样例 n*m的矩阵 L个伞兵 给出每行每列装激光的花费 伞兵的位置 要求杀死所有伞兵 总费用为这些费用的乘积  求花费最小 建图  源点 ->   行   -> 列  -> 汇点 ...

  5. poj 3084 最小割

    题目链接:http://poj.org/problem?id=3084 本题主要在构图上,我采用的是把要保护的房间与源点相连,有intruder的与汇点相连,相对麻烦. #include <cs ...

  6. poj 3469 最小割模板sap+gap+弧优化

    /*以核心1为源点,以核心2为汇点建图,跑一遍最大流*/ #include<stdio.h> #include<string.h> #include<queue> ...

  7. POJ 2125 Destroying The Graph (二分图最小点权覆盖集+输出最小割方案)

    题意 有一个图, 两种操作,一种是删除某点的所有出边,一种是删除某点的所有入边,各个点的不同操作分别有一个花费,现在我们想把这个图的边都删除掉,需要的最小花费是多少. 思路 很明显的二分图最小点权覆盖 ...

  8. poj 2125 Destroying The Graph 最小割+方案输出

    构图思路: 1.将所有顶点v拆成两个点, v1,v2 2.源点S与v1连边,容量为 W- 3.v2与汇点连边,容量为 W+ 4.对图中原边( a, b ), 连边 (a1,b2),容量为正无穷大 则该 ...

  9. poj 2125 Destroying The Graph (最小点权覆盖)

    Destroying The Graph http://poj.org/problem?id=2125 Time Limit: 2000MS   Memory Limit: 65536K       ...

随机推荐

  1. The method Inflate() in android

    Inflate() method can find out a layout defined by xml,as like the findViewById() method,but there ha ...

  2. cmd不是内部命令解决方法

    当进入cmd之后,经常会出现这样的提示“不是内部命令”等,给一些习惯使用cmd排查故障的IT管理员带来了困扰,现将解决方法介绍一下,希望能帮助你. 1.看看你机子里的 c:\windows\syste ...

  3. shell--管道命令(pipe)

    管道命令使用的是“|”这个界定符号 管道命令“|”仅能处理经由前面一个命令传来的正确信息,也就是standard output的信息,对于standard error并没有直接处理的能力 每个管道后面 ...

  4. 【angularJS】前后台分离,angularJS使用Token认证

    参考资料: [AngularJS系列(4)] 那伤不起的provider们啊~ (Provider, Value, Constant, Service, Factory, Decorator):htt ...

  5. go 中goroutine 的使用

    一.多线程定义: 所谓的多线程,multithreading.有多线程能力的计算机因有硬件支持而能够在同一时间执行多于一个线程,进而提升整体处理性能.具有这种能力的系统包括对称多处理机.多核心处理器以 ...

  6. Unity3D在WebPlayer模式下的异常上报探索

    原地址:http://www.cnblogs.com/hisiqi/archive/2013/07/21/3203527.html 我们知道,Unity3D在WebPlayer的发布模式下是沙箱环境中 ...

  7. 网站定时任务IIS配置

    网站中的定时任务一般是必不可少的,具体的实现方法此文不做详细说明,如有需要了解的请留言.本文主要讲述定时任务有关IIS中的设置. 如果一个网站在20分钟内(IIS默认为20分钟)没有客户端访问,服务器 ...

  8. centos7下安装openvpn,访问内网服务器 (二) windows访问

    一.简介 在上一章中已经安装好了openvpn,并且已经启动成功,现在就可以通过openvpn的客户端进行连接访问内网服务器了. 二.安装openvpn客户端 下载地址: https://www.te ...

  9. Linux内核设计基础(五)之内存管理

    我感觉学习操作系统首先要从内存分配和管理入手. 首先我们应该知道现代操作系统是以页为单位进行内存管理的,32位体系结构支持4KB的页.而64位体系结构支持8KB的页.页是用来分配的.怎样才干进行高效和 ...

  10. mysql select *... where id in (select 字符串 from ... )查询结果问题?

    SQL中的写法为 ); 查询结果为: id TypeName 1 新手 2 手机 在MYSQL中 ); 查询结果为: id TypeName 1 新手 少了一条数据. 其中 查询结果为 Newcard ...