【动态规划】矩形嵌套

时间限制: 1 Sec  内存限制: 128 MB
提交: 23  解决: 9
[提交][状态][讨论版]

题目描述

有n个矩形,每个矩形可以用a,b来描述,表示长和宽。矩形X(a,b)可以嵌套在
矩形Y(c,d)中当且仅当a<c,b<d或者
b<c,a<d(相当于旋转X90度)。例如(1,5)可以嵌套在(6,2)内,但不能嵌套在(3,4)中。你的任务是选出尽可能多的矩形排
成一行,使得除最后一个外,每一个矩形都可以嵌套在下一个矩形内。

输入

第一行是一个正正数N(0<N<10),表示测试数据组数,
每组测试数据的第一行是一个正正数n,表示该组测试数据中含有矩形的个数(n<=1000)
随后的n行,每行有两个数a,b(0<a,b<100),表示矩形的长和宽

输出

每组测试数据都输出一个数,表示最多符合条件的矩形数目,每组输出占一行

样例输入

1
10
1 2
2 4
5 8
6 10
7 9
3 1
5 8
12 10
9 7
2 2

样例输出

5
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 1000000007
typedef long long ll;
using namespace std;
int dp[];
int w[][];
int n,m,a,b;
struct man
{
int x,y,num;
};man sa[];
void createGraph()
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
{
if(sa[i].x>sa[j].x && sa[i].y>sa[j].y)w[i][j]=;
}
}
}
int DP(int i)
{
int& res=dp[i];
if(res>)return res;
res=;
for(int j=;j<=n;j++)
{
if(w[i][j])res=max(res,DP(j)+);
}
return res;
}
int main() {
int t;
cin>>t;
while(t--) { memset(w,,sizeof(w));
memset(dp,,sizeof(dp));
int minn=inf;
cin>>n;
for(int i=;i<=n;i++)
{
cin>>a>>b;
sa[i].x=a>b?a:b;
sa[i].y=a>b?b:a;
}
createGraph();
int ans=;
for(int k=;k<=n;k++)
{
ans=max(DP(k),ans);
}
cout<<ans<<endl;
}
return ;
}

【动态规划】矩形嵌套 (DGA上的动态规划)的更多相关文章

  1. NYOJ 16 矩形嵌套 (DAG上的DP)

    矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 有n个矩形,每个矩形能够用a,b来描写叙述.表示长和宽.矩形X(a,b)能够嵌套在矩形Y(c,d)中当且仅当 ...

  2. NYOJ_矩形嵌套(DAG上的最长路 + 经典dp)

    本题大意:给定多个矩形的长和宽,让你判断最多能有几个矩形可以嵌套在一起,嵌套的条件为长和宽分别都小于另一个矩形的长和宽. 本题思路:其实这道题和之前做过的一道模版题数字三角形很相似,大体思路都一致,这 ...

  3. DAG上的动态规划之嵌套矩形

    题意描述:有n个矩形,每个矩形可以用两个整数a.b描述,表示它的长和宽, 矩形(a,b)可以嵌套在矩形(c,d)当且仅当a<c且b<d, 要求选出尽量多的矩形排成一排,使得除了最后一个外, ...

  4. 嵌套矩形——DAG上的动态规划

    有向无环图(DAG,Directed Acyclic Graph)上的动态规划是学习动态规划的基础.非常多问题都能够转化为DAG上的最长路.最短路或路径计数问题. 题目描写叙述: 有n个矩形,每一个矩 ...

  5. 南阳 ACM16 矩形嵌套 动态规划

    矩形嵌套 时间限制:3000 ms  |           内存限制:65535 KB 难度:4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c, ...

  6. oj.1677矩形嵌套,动态规划 ,贪心

    #include<iostream> #include<algorithm> #include<cstring> using namespace std; stru ...

  7. NYOJ 16 矩形嵌套(动态规划)

    矩形嵌套 时间限制: 3000 ms  |  内存限制: 65535 KB 难度: 4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅 ...

  8. 矩形嵌套-记忆化搜索(dp动态规划)

    矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4 描写叙述 有n个矩形,每个矩形能够用a,b来描写叙述,表示长和宽. 矩形X(a,b)能够嵌套在矩形Y(c,d)中当且仅 ...

  9. UVa 103 Stacking Boxes --- DAG上的动态规划

    UVa 103 题目大意:给定n个箱子,每个箱子有m个维度, 一个箱子可以嵌套在另一个箱子中当且仅当该箱子的所有的维度大小全部小于另一个箱子的相应维度, (注意箱子可以旋转,即箱子维度可以互换),求最 ...

随机推荐

  1. 【算法】Prüfer编码 —— HNOI2004树的计数

    的确,如果不知道这个编码的话的确是一脸懵逼.在这里放一篇认为讲的很详细的 BLOG,有关于编码的方式 & 扩展在里面都有所提及. 欢迎点此进入 --> 大佬的博客 在这里主要想推导一下最 ...

  2. [洛谷P1887]乘积最大3

    题目大意:请你找出$m$个和为$n$的正整数,他们的乘积要尽可能的大.输出字典序最小的方案 题解:对于一些数,若它们的和相同,那么越接近它们的乘积越大. 卡点:无 C++ Code: #include ...

  3. 【NOIP模拟赛】chess 建图+spfa统计方案数

    似乎弗洛伊德和迪杰斯特拉都干不了统计方案数,spfa的话就是不断入队就好. #include <cstdio> #include <cstring> #include < ...

  4. 【BZOJ 3165】 [Heoi2013]Segment 李超线段树

    所谓李超线段树就是解决此题一类的问题(线段覆盖查询点最大(小)),把原本计算几何的题目变成了简单的线段树,巧妙地结合了线段树的标记永久化与标记下传,在不考虑精度误差的影响下,打法应该是这样的. #in ...

  5. 如何开始创建第一个基于Spring MVC的Controller

    万事开头难,良好的开端是成功的一半! 以下示例怎么开始创建我们的第一个Spring MVC控制器Controller 1.新建一个java类,命名为:MyFirstController,包含以下代码, ...

  6. HDU 5665

    Lucky Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submi ...

  7. Join an instance to my AWS Directory Service domain

    https://amazonaws-china.com/cn/premiumsupport/knowledge-center/ec2-systems-manager-dx-domain/ https: ...

  8. NodeJS概述

    NodeJS中文API 一.概述 Node.js 是一种建立在Google Chrome’s v8 engine上的 non-blocking (非阻塞), event-driven (基于事件的) ...

  9. [bzoj3990][SDOI2015]排序-搜索

    Brief Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<= ...

  10. [bzoj1770][Usaco2009 Nov]lights 燈——Gauss消元法

    题意 给定一个无向图,初始状态所有点均为黑,如果更改一个点,那么它和与它相邻的点全部会被更改.一个点被更改当它的颜色与之前相反. 题解 第一道Gauss消元题.所谓gauss消元,就是使用初等行列式变 ...