对于斜率优化的DP转移方程,一般以w[i]=max(w[j]+(sum[i]-sum[j])*v)的1D1D形式为主,直观看来就是前j个为若干个阶段,第j+1到第i个为一个阶段,每个阶段有自己的代价或价值。

  我们从一道题来入手,bzoj 1911 http://61.187.179.132/JudgeOnline/problem.php?id=1911 这是一道典型的斜率优化题,作为练手的入门题再适合不过。

  这道题的大概意思为将1-n个数划分为若干区间,每个区间有一个价值=a*Σ(a[i])^2+b*Σ(a[i])+c,最后使代价和最大。

  设前缀和为sum,那么很容易写出转移方程w[i]:=max(w[j]+a*(sum[i]-sum[j])*(sum[i]-sum[j])+c),但是这样的时间复杂度为n^2,显然不能通过全部测试数据。那么我们考虑斜率优化。

  假设当前需要转移到第i个数,对于i的最优解为j,那么我们需要证明对于任意k>j都有j比k更优。(k<j时下文会提到)

  那么我们可以得到式子w[j]+a*(sum[i]-sum[j])*(sum[i]-sum[j])+c>w[k]+a*(sum[i]-sum[k])*(sum[i]-sum[k])+c

  经整理我们可以得到(w[j]+a*sum[j]*sum[j]-b*sum[j])-(w[j]+a*sum[j]*sum[j]-b*sum[j])>2*a*sum[i]*(sum[j]-sum[k])

  因为j<k且数列的每一项>0所以sum[j]-sum[k]<0,所以我们将sum[j]-sum[k]除到式子的左面,那么可以得到

  

  ((w[j]+a*sum[j]*sum[j]-b*sum[j])-(w[j]+a*sum[j]*sum[j]-b*sum[j]))/(sum[j]-sum[k])<2*a*sum[i]

  显然对于式子的右面,只与当前的i有关,与j与k无关,那么式子的左面,我们可以将他写成类似于斜率的式子。

  设g(i)=w[i]+a*sum[i]*sum[i]-b*sum[i],那么式子可以写成((g(j)-g(k))/(sum[j]-sum[k]))<2*a*sum[i],也就是说当g(j)与g(k)满足当前关系时,j比k更优,那么我们将g(i)当成纵坐标,sum[i]当成横坐标,就可以将转移表示为坐标系中的斜率

  因为sum为递增的,我们可以维护这样的一个下凸壳,这个凸壳满足一些性质:

  首先对于队首向后考虑,每两个相邻的元素的斜率为递增的,再考虑斜率的表达式

  ((w[j]+a*sum[j]*sum[j]-b*sum[j])-(w[j]+a*sum[j]*sum[j]-b*sum[j]))/(sum[j]-sum[k]),这也就是我们刚才证明的式子,这样的式子如果对于<2*a*sum[i]成立,即表示对于当前i状态,j优于k,那么假设队的第一二元素满足该式,之后斜率递减,则之后任意两个相邻的元素都满足。这代表队首的状态优于队的第二个,同时优于之后每一个元素,即j为当前转移的i的最优解。

  那么假设当前队首与第二元素的斜率大于2*a*sum[i],那么代表队中第二元素状态优于队首,那么对于之后的任意2*a*sum[j],sum[j]为递增,a<0,所以这里为递减的,即2*a*sum[i]>2*a*sum[j],又因为k(队首,队第二)>2*a*sum[i]>2*a*sum[j],所以对于之后的所有状态,队中第二元素都优于第一元素,所以队首没有价值了,出队即可。

  进队时,因为需要满足第一性质中斜率不断减小的性质,所以保证k(队末-1,队末)< k(队末-1,当前元素)就行了。具体的证明可以去看这里的报告http://akheyun.blog.163.com/blog/static/138249276201071372635257/

/**************************************************************
Problem:
User: BLADEVIL
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/ //By BLADEVIL
var
w, g :array[..] of int64;
sum :array[..] of longint;
q :array[..] of longint;
a,b,c :int64;
n :longint; procedure init;
var
i :longint;
begin
read(n); read(a,b,c);
for i:= to n do
begin
read(sum[i]);
sum[i]:=sum[i]+sum[i-];
end;
end; function k(x,y:longint):extended;
begin
k:=(g[y]-g[x])/(sum[y]-sum[x]);
end; procedure main;
var
i :longint;
h, t :longint;
cur :extended;
begin
w[]:=;
h:=; t:=;
q[]:=;
for i:= to n do
begin
cur:=*a*sum[i];
while (t-h>)and (k(q[h],q[h+])>cur) do inc(h);
w[i]:=w[q[h]]+a*int64(sum[i]-sum[q[h]])*int64(sum[i]-sum[q[h]])+b*int64(sum[i]-sum[q[h]])+c;
g[i]:=w[i]+a*int64(sum[i])*int64(sum[i])-b*int64(sum[i]);
while (t-h+>=)and(k(q[t],i)>k(q[t-],q[t])) do dec(t);
inc(t);
q[t]:=i;
end;
writeln(w[n]);
end; begin
init;
main;
end.

斜率优化DP讲解的更多相关文章

  1. 斜率优化dp 的简单入门

    不想写什么详细的讲解了...而且也觉得自己很难写过某大佬(大米饼),于是建议把他的 blog 先看一遍,然后自己加了几道题目以及解析...顺便建议看看算法竞赛(蓝皮书)的 0x5A 斜率优化(P294 ...

  2. 斜率优化DP学习笔记

    先摆上学习的文章: orzzz:斜率优化dp学习 Accept:斜率优化DP 感谢dalao们的讲解,还是十分清晰的 斜率优化$DP$的本质是,通过转移的一些性质,避免枚举地得到最优转移 经典题:HD ...

  3. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  4. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  5. [BZOJ3156]防御准备(斜率优化DP)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3156 分析: 简单的斜率优化DP

  6. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  7. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  8. BZOJ 3156: 防御准备 斜率优化DP

    3156: 防御准备 Description   Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战 ...

  9. HDU2829 Lawrence(斜率优化dp)

    学了模板题之后上网搜下斜率优化dp的题目,然后就看到这道题,知道是斜率dp之后有思路就可以自己做不出来,要是不事先知道的话那就说不定了. 题意:给你n个数,一开始n个数相邻的数之间是被东西连着的,对于 ...

随机推荐

  1. 「题目代码」P1029~P1033(Java)

    1029 C基础-求解方程 import java.util.*; import java.io.*; import java.math.BigInteger; public class Main { ...

  2. iframe底边多出4px或5px解决办法

    问题: 在处理iframe框架自适应时,并且已经去掉iframe的边框,但仍然出现底边多出4px或5px高度的情况.如图 <div id="content"> < ...

  3. LAXCUS对数据存储的优化

        LAXCUS兼容行存储(NSM)和列存储(DSM)两种数据模型,实现了混合存储.同时在分布环境里,做到将数据的分发和备份自动处理,这样就不再需要人工干预了.     行存储,为了兼容广大用户对 ...

  4. 关于c++的头文件依赖

    正在看google c++编程规范,里面对头文件依赖是这么说的: 使用前置声明(forward declarations)尽量减少.h文件中#include的数量. 当一个头文件被包含的同时也引入了一 ...

  5. POJ 1015 Jury Compromise (动态规划)

    dp[i][j]代表选了i个人,D(J)-P(J)的值为j的状态下,D(J)+P(J)的最大和. #include <cstdio> #include <cstring> #i ...

  6. python 注册表重置ie代理 ss使用后的代理恢复

    每次用完ss客户端,浏览器代理都不会改回来,不想手动改,只能用python脚本处理了. import winreg def disableProxy(): proxy = "" x ...

  7. CodeForces Round #521 (Div.3) E. Thematic Contests

    http://codeforces.com/contest/1077/problem/E output standard output Polycarp has prepared nn competi ...

  8. document.querySelector()和document.querySelectorAll()

    HTML5向Web API新引入了 document.querySelector()和document.querySelectorAll()两个方法,都可以接收三种类型的参数:id(#),class( ...

  9. 【python】Python中给List添加元素的4种方法分享

    List 是 Python 中常用的数据类型,它一个有序集合,即其中的元素始终保持着初始时的定义的顺序(除非你对它们进行排序或其他修改操作). 在Python中,向List添加元素,方法有如下4种方法 ...

  10. 批处理之SET命令

    除了 下面分别介绍: 表示第二个字符到倒数第三个字符的值