# coding:utf-8
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = ''
from Sigmoid import sigmoid x_data = np.arange(-2*np.pi,2*np.pi,0.1).reshape(-1,1)
y_data = np.sin(x_data).reshape(-1,1)
# x_data = sigmoid(x_data)
# y_data = sigmoid(y_data)
print(x_data.shape,y_data.shape) # 建立tensorflow模型
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])
# 首层
w = tf.Variable(tf.random_normal([1,10]))
b = tf.Variable(tf.zeros([1,10]))
# 中间层
w1 = tf.Variable(tf.random_normal([10,20]))
b1 = tf.Variable(tf.zeros([1,1]))
# 输出层
w2 = tf.Variable(tf.random_normal([20,1]))
b2 = tf.Variable(tf.zeros([1,1])) y_pred = tf.matmul(x,w)+b
# 激活函数
y_pred_1 = tf.nn.tanh(y_pred)
yy = tf.matmul(y_pred_1,w1)+b1
y_pred_ = tf.nn.tanh(yy)
y1 = tf.matmul(y_pred_,w2)+b2
y2 = tf.nn.tanh(y1)
#二次代价函数
loss = tf.reduce_mean(tf.square(y-y2))
# 训练方法:梯度下降法
train_model = tf.train.GradientDescentOptimizer(0.2).minimize(loss)
#结果存放在一个布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(y2,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
# 初始化变量
inint = tf.global_variables_initializer()
# 开始训练
with tf.Session() as sess:
sess.run(inint)
for i in range(10000):
sess.run(train_model,feed_dict={x:x_data,y:y_data})
if i%1000==0:
auc = sess.run(accuracy,feed_dict={x:x_data,y:y_data})
print('迭代次数:%d'%i,'auc:%d'%auc,' 损失函数(loss):',sess.run(loss,feed_dict={x:x_data,y:y_data}))
y_ = sess.run(y2,feed_dict={x:x_data})
sess.close() plt.figure('tensorflow',figsize=(12,6))
plt.scatter(x_data, y_data,label='sin(x)的值')
plt.plot(x_data,y_,'r',linewidth=1,label='tensorflow拟合值')
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体为SimHei显示中文
plt.rcParams['axes.unicode_minus'] = False # 设置正常显示符号
plt.title('tensorflow实现y=sin(x)拟合')
plt.xlabel('x-values',{'size':15})
plt.ylabel('y-values-sin(x)',{'size':15})
plt.legend(loc='upper right')
plt.show()

TensorFlow_曲线拟合的更多相关文章

  1. matlab 曲线拟合

    曲线拟合(转载:http://blog.sina.com.cn/s/blog_8e1548b80101c9iu.html) 补:拟合多项式输出为str 1.poly2str([p],'x') 2. f ...

  2. python scipy学习-曲线拟合

    根据某地每月的平均温度[17, 19, 21, 28, 33, 38, 37, 37, 31, 23, 19, 18]拟合温度函数. import numpy as np import matplot ...

  3. excel曲线拟合怎么弄

    在做社会调研或科学实验时常常需要把得到的实验数据拟合成曲线图,这样可以使结果形象易懂.下面将介绍怎么用excel来快速地进行曲线拟合.包括添加平滑曲线,线性,指数,幂,多项式(如二次曲线,三次曲线.. ...

  4. Matlab的曲线拟合工具箱CFtool使用简介

    http://phylab.fudan.edu.cn/doku.php?id=howtos:matlab:mt1-5 一. 单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱 cftool ...

  5. Matlab单一变量曲线拟合-cftool

    2.启动曲线拟合工具箱>cftool 3.进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口:(2)利用X data和Y data的下 ...

  6. Apache Commons Math3学习笔记(2) - 多项式曲线拟合(转)

    多项式曲线拟合:org.apache.commons.math3.fitting.PolynomialCurveFitter类. 用法示例代码: // ... 创建并初始化输入数据: double[] ...

  7. Matlab: 白噪声与曲线拟合

    在信号处理中常常需要用到曲线拟合,这里介绍一下利用最小二乘拟合一般曲线的方法,并对滤掉信号中白噪声的方法作些介绍. 为了测试拟合算法的好坏,先模拟出一个信号作为检验算法的例子: 用白噪声产生模拟信号: ...

  8. 关于java实现自定义曲线拟合的研究

    项目需要拟合曲线,使用java实现.采用了apache-commons-math3实现自定义的曲线. 作为apache开源的搞数学计算的超强的库,一直不受市场重视.为啥呢?经过研究,使用java这个强 ...

  9. matlab 曲线拟合小记

    在matlab中经常需要对数据进行曲线拟合,如最常见的多项式拟合,一般可以通过cftool调用曲线拟合工具(curve fit tool),通过图形界面可以很方便的进行曲线拟合,但是有些时候也会遇到不 ...

随机推荐

  1. MySQL高可用之MHA切换测试(switchover & failover)

      Preface       I've installed MasterHA yesterday,Now let's test the master-slave switch and failove ...

  2. Django admin源码剖析

    单例模式 单例模式(Singleton Pattern)是一种常用的软件设计模式,该模式的主要目的是确保某一个类只有一个实例存在.当你希望在整个系统中,某个类只能出现一个实例时,单例对象就能派上用场. ...

  3. 「日常训练」Our Tanya is Crying Out Loud (CFR466D2B)

    题意(Codeforces 940B) 对一个数字$x$,你有两个决策:花费$A$减一.或花费$B$除以$k$(但必须可以除尽).问使之到$1$的最少花费. 分析 贼鸡儿简单,但我花式犯蠢……如果除不 ...

  4. fidder工具学习抓取Firefox包

    fidder抓取Firefox的https请求 抓包之前需要设置fidder,我下面的截图是fidder4,打开fidder—>Tools—>Options如图: 选择https,勾选所有 ...

  5. java.sql.Date java.sql.Time java.sql.Timestamp 之比较

    java.sql.Date,java.sql.Time和java.sql.Timestamp 三个都是java.util.Date的子类(包装类). java.sql.Date是java.util.D ...

  6. linux备忘录-正则表达式与文件格式化处理

    正则表达式 POSIX标准的符号 [:alnum:] -> 英文大小写字母和数字 0-9,A-Z,a-z [:alpha:] -> 英文大小写字母 A-Z,a-z [:blank:] -& ...

  7. 线段树——hdu1754I Hate It

    一.题目回顾 题目链接:I Hate It Problem Description 很多学校流行一种比较的习惯.老师们很喜欢询问,从某某到某某当中,分数最高的是多少.这让很多学生很反感.不管你喜不喜欢 ...

  8. ExtJS新手学习中常见问题

    1.常常出现运行之后不出现应该出现的效果. 这种情况一般是引用ExtJS路径不正确,要确保路径正确. 示例: <!DOCTYPE html> <html lang="en& ...

  9. [剑指Offer] 7.斐波那契数列

    class Solution { public: int Fibonacci(int n) { ] = {}; res[] = ; res[] = ; ;i < n;i ++){ res[i] ...

  10. 【bzoj2330】[SCOI2011]糖果 差分约束系统

    题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配 ...