【洛谷 P3805】 【模板】manacher算法
题目链接
manacher算法:在线性时间内求一个字符串中所有/最长回文串的算法。
先来考虑一下暴力的算法,枚举每个中点,向两边扩展,时间复杂度\(O(n^2)\)。
来分析下此算法的缺点。
1、因为回文串有奇偶之分,所以要分类讨论,\(abba\)的对称轴不在字符上,分类讨论就会有点麻烦。
为此,\(manacher\)算法的解决方案是在每个字符之间插入一个相同的字符,比如说\(\#\),
\(ababa->\#a\#b\#a\#b\#a\#\),这样就不用考虑回文串的奇偶性了。
2、效率低。为什么低?每个位置会被重复遍历。和\(KMP\)算法类似,\(manacher\)也是利用已有信息减少重复无用操作。
比如说\(abacaba\),这是一个回文串,但两边的\(aba\)也都是一个回文串,我们在枚举到右边的\(b\)时就已经能确定已这个\(b\)为中心的回文串的回文半径至少为\(2\),然后直接从这个长度开始拓展就好了。设\(hw[i]\)表示以\(a[i]\)为回文中心的回文半径长度,\(maxright\)表示当前已发现的右端点最右的右端点,\(mid\)表示这个回文串的中心。
则有如下算法(我觉得看代码比看讲解容易懂些)
for(int i = 1; i < len; ++i){
if(i < maxright)
hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i); //min左边的参数是这个点的对称点的hw值,右边的是保证这个部分在这个大回文串之内
else hw[i] = 1;
while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i]; //拓展
if(hw[i] + i > maxright){ //更新右端点
maxright = hw[i] + i;
mid = i;
}
}
该题完整代码
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 11000010;
char b[MAXN], a[MAXN << 1];
int hw[MAXN << 1], ans, n;
int main(){
scanf("%s", b);
a[0] = a[1] = '#';
int len = strlen(b);
for(int i = 0; i < len; ++i)
a[(i << 1) + 2] = b[i], a[(i << 1) + 3] = '#';
int maxright = 0, mid; len = (len << 1) + 3;
for(int i = 1; i < len; ++i){
if(i < maxright)
hw[i] = min(hw[(mid << 1) - i], hw[mid] + mid - i);
else hw[i] = 1;
while(a[i + hw[i]] == a[i - hw[i]]) ++hw[i];
if(hw[i] + i > maxright){
maxright = hw[i] + i;
mid = i;
}
ans = max(ans, hw[i] - 1);
}
printf("%d\n", ans);
return 0;
}
【洛谷 P3805】 【模板】manacher算法的更多相关文章
- 洛谷P3805 [模板]Manacher算法 [manacher]
题目传送门 题目描述 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 字符串长度为n 输入输出格式 输入格式: 一行小写英文字符a,b,c...y,z组成的字符 ...
- 洛谷.3805.[模板]manacher算法
题目链接 之前做很早了没写这篇,补上. 记录当前ex[]最大的回文中心id和最远延伸范围mx! 关于串的构造: 应该是 @ #A#B#C#B#A# $ ,而不是 @ A#B#C#B#A $ 比如 @a ...
- 洛谷 P3805 【模板】manacher算法
洛谷 P3805 [模板]manacher算法 洛谷传送门 题目描述 给出一个只由小写英文字符a,b,c...y,z组成的字符串S,求S中最长回文串的长度. 字符串长度为n 输入格式 一行小写英文字符 ...
- 洛谷P3373 [模板]线段树 2(区间增减.乘 区间求和)
To 洛谷.3373 [模板]线段树2 题目描述 如题,已知一个数列,你需要进行下面两种操作: 1.将某区间每一个数加上x 2.将某区间每一个数乘上x 3.求出某区间每一个数的和 输入输出格式 输入格 ...
- 洛谷 P3805【模板】manacher算法
题目链接:https://www.luogu.com.cn/problem/P3805 Manacher算法$O(n)$: 求以每个字符为中心的最长回文串的半径:如果要求可以以字符间隙为回文中心,就要 ...
- [洛谷P3805]【模板】manacher算法
题目大意:给你一个字符串,求出它的最长回文字段 题解:$manacher$算法 卡点:$p$数组未开两倍空间 C++ Code: #include <cstdio> #include &l ...
- 洛谷P3375 [模板]KMP字符串匹配
To 洛谷.3375 KMP字符串匹配 题目描述 如题,给出两个字符串s1和s2,其中s2为s1的子串,求出s2在s1中所有出现的位置. 为了减少骗分的情况,接下来还要输出子串的前缀数组next.如果 ...
- LCT总结——概念篇+洛谷P3690[模板]Link Cut Tree(动态树)(LCT,Splay)
为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--应用篇戳这里 概念.性质简述 首先介绍一下链剖分的概念(感谢laofu的讲课) 链剖分,是指一类 ...
- 【AC自动机】洛谷三道模板题
[题目链接] https://www.luogu.org/problem/P3808 [题意] 给定n个模式串和1个文本串,求有多少个模式串在文本串里出现过. [题解] 不再介绍基础知识了,就是裸的模 ...
随机推荐
- ubuntu 14.04安装nginx+php
转自:http://www.cnblogs.com/helinfeng/p/4219051.html 基于最新的Ubuntu 14.04(2014年9月)搭建nginx.php.mysql环境,以下全 ...
- Scala function programming
1. Arbitrary multi parameters funcs sum(1,2,3,4,5) = sum(1 to 5: _*)the equal '=' can be ignored if ...
- EntityFramewrok 使用
1.使用一些查询比较复杂或者需要拼接的查询的时候最好一直保持IQueryable.一直到最后取数据的时候才进行查询.例如分页之类的条件拼接. var query = dbset.Where(expre ...
- PHP将两个数组相加
$arr_a=[1=>1,2=>2,3=>3];$arr_b=[1=>'a',4=>4];print_r($arr_a+$arr_b);返回结果:Array ( [1] ...
- Qt QPainter::end: Painter ended whith 2 saced states
在使用Qt QPainter 的时候,有时会遇到“QPainter::end: Painter ended whith 2 saced states” 这时由于我们在使用的QPanter.trans ...
- Struts2(七.删除和修改用户功能的实现)
一.删除功能 之前跳转用户列表的时候把用户id,用户名,用户密码存入了ActionContext 1.userlist.jsp <%@ page language="java" ...
- 解决EasyUI DataGrid删除行失败的方法
笔者最近在做一个项目的后台,用到了EasyUI的datagrid控件,并开启了行内编辑功能,实际上也就是使用了edatagird这个空间,引用了edatagrid.js,一切似乎都做的顺风顺水,添加数 ...
- 感知机学习算法(PLA)
Perception Learning Algorithm, PLA 1.感知机 感知机是一种线性分类模型,属于判别模型. 感知机模型给出了由输入空间到输出空间的映射: f(X) = sign(WTX ...
- Java IO流-File类的使用示例-创建文件夹和文件的正确方法
当创建一个文件时,比如:E:\\test\\test.txt,此时若文件夹test不存在,那么直接创建文件会出错,故首先要判断文件夹是否存在,不存在的话要首先创建文件夹. public class F ...
- lintcode-83-落单的数 II
83-落单的数 II 给出3*n + 1 个的数字,除其中一个数字之外其他每个数字均出现三次,找到这个数字. 样例 给出 [1,1,2,3,3,3,2,2,4,1] ,返回 4 挑战 一次遍历,常数级 ...