POJ - 1061 扩展gcd
题意:求\((n-m)t+Lk=x-y\)的解\(t\)
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int maxn = 1e6+11;
const int oo = 0x3f3f3f3f;
const double eps = 1e-7;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
ll exgcd(ll a,ll b,ll &x,ll &y){
if(b==0){
x=1;y=0;
return a;
}else{
ll gcd=exgcd(b,a%b,x,y);
ll tmp=x;
x=y;y=tmp-a/b*x;
return gcd;
}
}
int main(){
int kase=0;
ll x,y,m,n,L,MOD;
while(cin>>x>>y>>m>>n>>L){
ll t,k;
ll gcd=exgcd(n-m+L,L,t,k);
if((x-y+L)%gcd!=0) cout<<"Impossible"<<endl;
else{
t=t*(x-y+L)/gcd;
MOD=L/gcd;
t=(t%MOD+MOD)%MOD;
cout<<t<<endl;
}
}
return 0;
}
POJ - 1061 扩展gcd的更多相关文章
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- poj 1061 扩展欧几里德同余方程求解
摘要写在一瞪眼. #include<iostream> using namespace std; long long exgcd(long long a,long long b,long ...
- poj 1061(扩展欧几里得定理求不定方程)
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特 ...
- POJ 1061 扩展欧几里得
#include<stdio.h> #include<string.h> typedef long long ll; void gcd(ll a,ll b,ll& d, ...
- POJ - 1061 扩展欧几里德算法+求最小正整数解
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #inclu ...
- POJ 1061 青蛙的约会(扩展GCD求模线性方程)
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> ...
- Poj 1061 青蛙的约会(扩展GCD)
题目链接:http://poj.org/problem?id=1061 解题报告:两只青蛙在地球的同一条纬度线上,选取一个点位坐标轴原点,所以现在他们都在同一个首尾相连的坐标轴上,那么他们现在的位置分 ...
- poj 1061 青蛙的约会(扩展gcd)
题目链接 题意:两只青蛙从数轴正方向跑,给出各自所在位置, 和数轴长度,和各自一次跳跃的步数,问最少多少步能相遇. 分析:(x+m*t) - (y+n*t) = p * L;(t是跳的次数,L是a青蛙 ...
- 扩展欧几里德 POJ 1061
欧几里德的是来求最大公约数的,扩展欧几里德,基于欧几里德实现了一种扩展,是用来在已知a, b求解一组x,y使得ax+by = Gcd(a, b) =d(解一定存在,根据数论中的相关定理,证明是用裴蜀定 ...
随机推荐
- 496. Next Greater Element I 另一个数组中对应的更大元素
[抄题]: You are given two arrays (without duplicates) nums1 and nums2 where nums1’s elements are subse ...
- 由于挂载的nfs存储目录掉下线,导致创建VM时,无法创建
具体错误,如下截图 重新挂载存储后,在创建VM,将成功
- 如何安全退出已调用多个Activity的应用
对于单一Activity的应用来说,退出很简单,直接finish()即可.当然,也可以用killProcess()和System.exit()这样的方法. 但是,对于多Activity的应用来说,在打 ...
- C# JSON使用的常用技巧(二)
JSON在php里一句json_encode就可以得到 在C#里我们同样也很容易的可以得到 用到的类库:Newtonsoft.Json.dll 实体类: class Cat { public stri ...
- 【2008nmj】Logistic回归二元分类感知器算法.docx
给你一堆样本数据(xi,yi),并标上标签[0,1],让你建立模型(分类感知器二元),对于新给的测试数据进行分类. 要将两种数据分开,这是一个分类问题,建立数学模型,(x,y,z),z指示[0,1], ...
- open与fopen的用法
1. fopen 打开普通文件 带缓冲区 缓冲文件系统是借助文件结构体指针来对文件进行管理,通过文件指针来对文件进行访问,既可以读写字符.字符串.格式化数据,也可以读写二进制数据. 函数原 ...
- cmake的一些词的解释
cmake中一些预定义变量 PROJECT_SOURCE_DIR 工程的根目录 PROJECT_BINARY_DIR 运行cmake命令的目录,通常是${PROJECT_SOURCE_DIR} ...
- Java中方法next()和nextLine()的区别
原创 Java中Scanner类中的方法next()和nextLine()都是吸取输入台输入的字符,区别: next()不会吸取字符前/后的空格/Tab键,只吸取字符,开始吸取字符(字符前后不算)直到 ...
- angular 事件绑定
<button (click)="onClick($event)">点我</button> import { Component, OnInit } fro ...
- 【02】循序渐进学 docker:如何安装
写在前面的话 我们接下来的操作都是 CentOS 7.5 以下完成的,为了避免你我结果不一致,建议你也采用 CentOS 7.5,原因如下: 1. 个人几年工作下来经历的公司,包括身边的运维朋友,90 ...