本文参考Yann LeCun的LeNet5经典架构,稍加ps得到下面适用于本手写识别的cnn结构,构造一个两层卷积神经网络,神经网络的结构如下图所示:

  输入-卷积-pooling-卷积-pooling-全连接层-Dropout-Softmax输出

  

  第一层卷积利用5*5的patch,32个卷积核,可以计算出32个特征。然后进行maxpooling。第二层卷积利用5*5的patch,64个卷积核,可以计算出64个特征。然后进行max pooling。卷积核的个数是我们自己设定,可以增加卷积核数目提高分类精度,但是那样会增加更大参数,提高计算成本。

  这样输入是分辨率为28*28的图片。利用5*5的patch进行卷积。我们的卷积使用1步长(stride size),0填充模块(zero padded),这样得到的输出和输入是同一个大小。经过第一层卷积之后,卷积特征大小为28*28。然后通过ReLU函数激活。我们的pooling用简单传统的2x2大小的模板做max pooling,这样pooling后得到14*14大小的特征。经过第二层卷积后,卷积特征大小为14*14,然后通过ReLU函数激活,再经过pooling后得到特征大小为7*7。

  现在,图片尺寸减小到7x7,我们加入一个有1024个神经元的全连接层,用于处理整个图片。我们把池化层输出的张量展开成一些向量,乘上权重矩阵,加上偏置,然后对其使用ReLU。

  为了避免过拟合,在全连接层输出接上dropout层。Dropout层在训练时屏蔽一半的神经元。

1、输入数据

  直接使用tensorflow中的模块,导入输入数据:

    from tensorflow.examples.tutorials.mnist import input_data

    mnist = input_data.read_data_sets('MNIST_data', one_hot=True)

  或者使用官方提供的input_data.py文件下载mnist数据

2、启动session

  (1)交互方式启动session

    sess = tf.InteractiveSession()

  (2)一般方式启动session

    sess = tf.Session()

  ps: 使用交互方式不用提前构建计算图,而使用一般方式必须提前构建好计算图才能启动session

3、权重和偏置初始化

  权重初始化的原则:应该加入少量的噪声来打破对称性并且要避免0梯度(初始化为0)

  权重初始化一般选择均匀分布或是正态分布

  定义权重初始化方法

   def weight_variable(shape):
    #截尾正态分布,stddev是正态分布的标准偏差
    initial = tf.truncated_normal(shape=shape, stddev=0.1)
    return tf.Variable(initial)

  定义偏置初始化方法

  def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

4、定义卷积和池化方法

  TensorFlow在卷积和Pooling上有很强的灵活性。我们怎么处理边界?步长应该设多大?在这个实例里,我们的卷积使用1步长(stride size),0填充模块(zero padded),保证输出和输入是同一个大小。我们的pooling用简单传统的2x2大小的模板做maxpooling。为了代码更简洁,我们把这部分抽象成一个函数。

  def conv2d(x, W):
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1],  padding='SAME')
  def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

5、直接贴完整代码

from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
#加载数据集
mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #以交互式方式启动session
#如果不使用交互式session,则在启动session前必须
# 构建整个计算图,才能启动该计算图
sess = tf.InteractiveSession() """构建计算图"""
#通过占位符来为输入图像和目标输出类别创建节点
#shape参数是可选的,有了它tensorflow可以自动捕获维度不一致导致的错误
x = tf.placeholder("float", shape=[None, 784]) #原始输入
y_ = tf.placeholder("float", shape=[None, 10]) #目标值 #为了不在建立模型的时候反复做初始化操作,
# 我们定义两个函数用于初始化
def weight_variable(shape):
#截尾正态分布,stddev是正态分布的标准偏差
initial = tf.truncated_normal(shape=shape, stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1, shape=shape)
return tf.Variable(initial) #卷积核池化,步长为1,0边距
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
strides=[1, 2, 2, 1], padding='SAME') """第一层卷积"""
#由一个卷积和一个最大池化组成。滤波器5x5中算出32个特征,是因为使用32个滤波器进行卷积
#卷积的权重张量形状是[5, 5, 1, 32],1是输入通道的个数,32是输出通道个数
W_conv1 = weight_variable([5, 5, 1, 32])
#每一个输出通道都有一个偏置量
b_conv1 = bias_variable([32]) #位了使用卷积,必须将输入转换成4维向量,2、3维表示图片的宽、高
#最后一维表示图片的颜色通道(因为是灰度图像所以通道数维1,RGB图像通道数为3)
x_image = tf.reshape(x, [-1, 28, 28, 1]) #第一层的卷积结果,使用Relu作为激活函数
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1))
#第一层卷积后的池化结果
h_pool1 = max_pool_2x2(h_conv1) """第二层卷积"""
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) """全连接层"""
#图片尺寸减小到7*7,加入一个有1024个神经元的全连接层
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
#将最后的池化层输出张量reshape成一维向量
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
#全连接层的输出
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1) """使用Dropout减少过拟合"""
#使用placeholder占位符来表示神经元的输出在dropout中保持不变的概率
#在训练的过程中启用dropout,在测试过程中关闭dropout
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) """输出层"""
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
#模型预测输出
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2) #交叉熵损失
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv)) #模型训练,使用AdamOptimizer来做梯度最速下降
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) #正确预测,得到True或False的List
correct_prediction = tf.equal(tf.argmax(y_, 1), tf.argmax(y_conv, 1))
#将布尔值转化成浮点数,取平均值作为精确度
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float")) #在session中先初始化变量才能在session中调用
sess.run(tf.initialize_all_variables()) #迭代优化模型
for i in range(20000):
#每次取50个样本进行训练
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={
x: batch[0], y_:batch[1], keep_prob:1.0}) #模型中间不使用dropout
print("step %d, training accuracy %g" % (i, train_accuracy))
train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5})
print("test accuracy %g" % accuracy.eval(feed_dict={
x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0}))

6、input_data.py文件
  
注:python3中没有xrange,其range与python2中的xrange作用相同
#!/urs/bin/env python
# -*- coding:utf-8 -*-
# Copyright 2015 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Functions for downloading and reading MNIST data."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
import os
import tensorflow.python.platform
import numpy
import urllib
import tensorflow as tf SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/' def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.request.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath def _read32(bytestream):
dt = numpy.dtype(numpy.uint32).newbyteorder('>')
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0] def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = numpy.frombuffer(buf, dtype=numpy.uint8)
data = data.reshape(num_images, rows, cols, 1)
return data def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = numpy.arange(num_labels) * num_classes
labels_one_hot = numpy.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items)
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels class DataSet(object):
def __init__(self, images, labels, fake_data=False, one_hot=False,
dtype=tf.float32):
"""Construct a DataSet.
one_hot arg is used only if fake_data is true. `dtype` can be either
`uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
`[0, 1]`.
"""
dtype = tf.as_dtype(dtype).base_dtype
if dtype not in (tf.uint8, tf.float32):
raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
dtype)
if fake_data:
self._num_examples = 10000
self.one_hot = one_hot
else:
assert images.shape[0] == labels.shape[0], (
'images.shape: %s labels.shape: %s' % (images.shape,
labels.shape))
self._num_examples = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
assert images.shape[3] == 1
images = images.reshape(images.shape[0],
images.shape[1] * images.shape[2])
if dtype == tf.float32:
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(numpy.float32)
images = numpy.multiply(images, 1.0 / 255.0)
self._images = images
self._labels = labels
self._epochs_completed = 0
self._index_in_epoch = 0 @property
def images(self):
return self._images @property
def labels(self):
return self._labels @property
def num_examples(self):
return self._num_examples @property
def epochs_completed(self):
return self._epochs_completed def next_batch(self, batch_size, fake_data=False):
"""Return the next `batch_size` examples from this data set."""
if fake_data:
fake_image = [1] * 784
if self.one_hot:
fake_label = [1] + [0] * 9
else:
fake_label = 0
return [fake_image for _ in range(batch_size)], [
fake_label for _ in range(batch_size)]
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples: # Finished epoch self._epochs_completed += 1 # Shuffle the data perm = numpy.arange(self._num_examples) numpy.random.shuffle(perm) self._images = self._images[perm] self._labels = self._labels[perm] # Start next epoch start = 0 self._index_in_epoch = batch_size assert batch_size <= self._num_examples end = self._index_in_epoch return self._images[start:end], self._labels[start:end]def read_data_sets(train_dir, fake_data=False, one_hot=False, dtype=tf.float32): class DataSets(object): pass data_sets = DataSets() if fake_data: def fake(): return DataSet([], [], fake_data=True, one_hot=one_hot, dtype=dtype) data_sets.train = fake() data_sets.validation = fake() data_sets.test = fake() return data_sets TRAIN_IMAGES = 'train-images-idx3-ubyte.gz' TRAIN_LABELS = 'train-labels-idx1-ubyte.gz' TEST_IMAGES = 't10k-images-idx3-ubyte.gz' TEST_LABELS = 't10k-labels-idx1-ubyte.gz' VALIDATION_SIZE = 5000 local_file = maybe_download(TRAIN_IMAGES, train_dir) train_images = extract_images(local_file) local_file = maybe_download(TRAIN_LABELS, train_dir) train_labels = extract_labels(local_file, one_hot=one_hot) local_file = maybe_download(TEST_IMAGES, train_dir) test_images = extract_images(local_file) local_file = maybe_download(TEST_LABELS, train_dir) test_labels = extract_labels(local_file, one_hot=one_hot) validation_images = train_images[:VALIDATION_SIZE] validation_labels = train_labels[:VALIDATION_SIZE] train_images = train_images[VALIDATION_SIZE:] train_labels = train_labels[VALIDATION_SIZE:] data_sets.train = DataSet(train_images, train_labels, dtype=dtype) data_sets.validation = DataSet(validation_images, validation_labels, dtype=dtype) data_sets.test = DataSet(test_images, test_labels, dtype=dtype) return data_sets
 

Tensorflow中使用CNN实现Mnist手写体识别的更多相关文章

  1. R︱Softmax Regression建模 (MNIST 手写体识别和文档多分类应用)

    本文转载自经管之家论坛, R语言中的Softmax Regression建模 (MNIST 手写体识别和文档多分类应用) R中的softmaxreg包,发自2016-09-09,链接:https:// ...

  2. 深度学习-mnist手写体识别

    mnist手写体识别 Mnist数据集可以从官网下载,网址: http://yann.lecun.com/exdb/mnist/ 下载下来的数据集被分成两部分:55000行的训练数据集(mnist.t ...

  3. keras入门--Mnist手写体识别

    介绍如何使用keras搭建一个多层感知机实现手写体识别及搭建一个神经网络最小的必备知识 import keras # 导入keras dir(keras) # 查看keras常用的模块 ['Input ...

  4. Tensorflow实践:CNN实现MNIST手写识别模型

    前言 本文假设大家对CNN.softmax原理已经比较熟悉,着重点在于使用Tensorflow对CNN的简单实践上.所以不会对算法进行详细介绍,主要针对代码中所使用的一些函数定义与用法进行解释,并给出 ...

  5. Pytorch CNN网络MNIST数字识别 [超详细记录] 学习笔记(三)

    目录 1. 准备数据集 1.1 MNIST数据集获取: 1.2 程序部分 2. 设计网络结构 2.1 网络设计 2.2 程序部分 3. 迭代训练 4. 测试集预测部分 5. 全部代码 1. 准备数据集 ...

  6. 入门项目数字手写体识别:使用Keras完成CNN模型搭建(重要)

    摘要: 本文是通过Keras实现深度学习入门项目——数字手写体识别,整个流程介绍比较详细,适合初学者上手实践. 对于图像分类任务而言,卷积神经网络(CNN)是目前最优的网络结构,没有之一.在面部识别. ...

  7. TensorFlow学习笔记(三)MNIST数字识别问题

    一.MNSIT数据处理 MNSIT是一个非常有名的手写体数字识别数据集.包含60000张训练图片,10000张测试图片.每张图片是28X28的数字. TonserFlow提供了一个类来处理 MNSIT ...

  8. [Python]基于CNN的MNIST手写数字识别

    目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...

  9. 写个神经网络,让她认得我`(๑•ᴗ•๑)(Tensorflow,opencv,dlib,cnn,人脸识别)

    训练一个神经网络 能让她认得我 阅读原文 这段时间正在学习tensorflow的卷积神经网络部分,为了对卷积神经网络能够有一个更深的了解,自己动手实现一个例程是比较好的方式,所以就选了一个这样比较有点 ...

随机推荐

  1. Sublime Text 3如何快速生成HTML5的头部信息和常用的快捷键

    一.快速生成HTML5的头部信息的步骤: 1.Ctrl + N,新建一个文档: 2.Ctrl + Shift + P,打开命令模式,再输入 sshtml 进行模糊匹配,将语法切换到html模式: 3. ...

  2. JavaScript数据结构与算法-链表练习

    链表的实现 一. 单向链表 // Node类 function Node (element) { this.element = element; this.next = null; } // Link ...

  3. Integrate-And-Fire Models(转)

    Integrate-And-Fire Models 基础知识 轴突:动作电位(电位差形成电流)=神经递质发放=脉冲产生树突或细胞体:神经递质的接受=产生内外膜电位差(电流产生)=接收脉冲脉冲编码:多采 ...

  4. scrapy使用笔记

    新建项目 在需要新建项目的目录下发指令 scrapy startproject MySpider 其中MySpider为工程的名字,会新建一个文件夹 进入工程目录 新建一个爬虫 scrapy gens ...

  5. Yii2.0数据库查询实例(三)

    常用查询: // WHERE admin_id >= 10 LIMIT 0,10 User::find()->])->offset()->limit()->all() / ...

  6. loadrunder脚本篇——执行操作系统命令

    思路: 用loadrunner system()函数 函数原型: int system( const char *string ); 示例一:在指定目录下创建指定文件 Action() { char ...

  7. 无线路由:关于WDS,Repeater等模式的说明

    转:http://blog.csdn.net/lizhiqiang5846/article/details/38397803 当今如果不用无线路由连接宽带似乎是很不popular了,当然Wifi/WL ...

  8. Django---Blog系统开发之注册页面(验证码&ajax发送文件)

    前端页面及渲染: 静态文件的配置:setting.py: static 文件放在app下 STATIC_URL = '/static/' STATIC_ROOT = ( os.path.join(BA ...

  9. Nginx之Location模块

    location 的语法 locltion可以把不同方式的请求,定位到不同的处理方式上 location分类及用法 location大致分为三类: location = patt {} [精准匹配] ...

  10. python 运行报错 Process finished with exit code -1073741819 (0xC0000005)

    发现是由于openpyxl模块导致的,去掉这个模块的内容就能运行,import openpyxl就运行不起来, 将openpyxl卸载了重装, 以及更换了不同的openpyxl版本,都不行,还是运行不 ...