flsk-SQLALchemy
SQLALchemy
一、介绍
SQLALchemy是一个基于Python实现的ORM框架。该框架是建立在DB API之上,使用关系对象映射进行数据库操作
简言之便就是:将类和对象转换成SQL,然后使用数据API执行SQL并获取执行的结果
安装:
pip3 install SQLALchemy
二、组成部分
engine, 框架的引擎 Connection Pooling , 数据库连接池 Dialect, 选择链接数据库的DB API种类 Schema /Types, 架构和类型 SQL Exprression Language, SQL表达式语言
SQLALcheam本省无法操作数据库,其必须来pymysql等第三方插件, Dialect用于数据API的交流,根据配置文件的不同
调用不同的数据库API,从而实现对数据库的操作,如:
MySQL-Python
mysql+mysqldb://<user>:<password>@<host>[:<port>]/<dbname> pymysql
mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>] MySQL-Connector
mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> cx_Oracle
oracle+cx_oracle://user:pass@host:port/dbname[?key=value&key=value...] 更多:http://docs.sqlalchemy.org/en/latest/dialects/index.html
三、使用
1.执行原生的SQL 语句
import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine engine = create_engine(
"mysql+pymysql://root:123@127.0.0.1:3306/t1?charset=utf8",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
) def task(arg):
conn = engine.raw_connection()
cursor = conn.cursor()
cursor.execute(
"select * from t1"
)
result = cursor.fetchall()
cursor.close()
conn.close() for i in range(20):
t = threading.Thread(target=task, args=(i,))
t.start()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5) def task(arg):
conn = engine.contextual_connect()
with conn:
cur = conn.execute(
"select * from t1"
)
result = cur.fetchall()
print(result) for i in range(20):
t = threading.Thread(target=task, args=(i,))
t.start()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading
import sqlalchemy
from sqlalchemy import create_engine
from sqlalchemy.engine.base import Engine
from sqlalchemy.engine.result import ResultProxy
engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/t1", max_overflow=0, pool_size=5) def task(arg):
cur = engine.execute("select * from t1")
result = cur.fetchall()
cur.close()
print(result) for i in range(20):
t = threading.Thread(target=task, args=(i,))
t.start()
注意: 查看连接 show status like 'Threads%';
2.ORM
a.创建数据库表
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index Base = declarative_base() class Users(Base):
__tablename__ = 'users' id = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=False)
# email = Column(String(32), unique=True)
# ctime = Column(DateTime, default=datetime.datetime.now)
# extra = Column(Text, nullable=True) __table_args__ = (
# UniqueConstraint('id', 'name', name='uix_id_name'),
# Index('ix_id_name', 'name', 'email'),
) def init_db():
"""
根据类创建数据库表
:return:
"""
engine = create_engine(
"mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
) Base.metadata.create_all(engine) def drop_db():
"""
根据类删除数据库表
:return:
"""
engine = create_engine(
"mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
) Base.metadata.drop_all(engine) if __name__ == '__main__':
drop_db()
init_db() 创建单表
创建单表
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import datetime
from sqlalchemy import create_engine
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, Text, ForeignKey, DateTime, UniqueConstraint, Index
from sqlalchemy.orm import relationship Base = declarative_base() # ##################### 单表示例 #########################
class Users(Base):
__tablename__ = 'users' id = Column(Integer, primary_key=True)
name = Column(String(32), index=True)
age = Column(Integer, default=18)
email = Column(String(32), unique=True)
ctime = Column(DateTime, default=datetime.datetime.now)
extra = Column(Text, nullable=True) __table_args__ = (
# UniqueConstraint('id', 'name', name='uix_id_name'),
# Index('ix_id_name', 'name', 'extra'),
) class Hosts(Base):
__tablename__ = 'hosts' id = Column(Integer, primary_key=True)
name = Column(String(32), index=True)
ctime = Column(DateTime, default=datetime.datetime.now) # ##################### 一对多示例 #########################
class Hobby(Base):
__tablename__ = 'hobby'
id = Column(Integer, primary_key=True)
caption = Column(String(50), default='篮球') class Person(Base):
__tablename__ = 'person'
nid = Column(Integer, primary_key=True)
name = Column(String(32), index=True, nullable=True)
hobby_id = Column(Integer, ForeignKey("hobby.id")) # 与生成表结构无关,仅用于查询方便
hobby = relationship("Hobby", backref='pers') # ##################### 多对多示例 ######################### class Server2Group(Base):
__tablename__ = 'server2group'
id = Column(Integer, primary_key=True, autoincrement=True)
server_id = Column(Integer, ForeignKey('server.id'))
group_id = Column(Integer, ForeignKey('group.id')) class Group(Base):
__tablename__ = 'group'
id = Column(Integer, primary_key=True)
name = Column(String(64), unique=True, nullable=False) # 与生成表结构无关,仅用于查询方便
servers = relationship('Server', secondary='server2group', backref='groups') class Server(Base):
__tablename__ = 'server' id = Column(Integer, primary_key=True, autoincrement=True)
hostname = Column(String(64), unique=True, nullable=False) def init_db():
"""
根据类创建数据库表
:return:
"""
engine = create_engine(
"mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
) Base.metadata.create_all(engine) def drop_db():
"""
根据类删除数据库表
:return:
"""
engine = create_engine(
"mysql+pymysql://root:123@127.0.0.1:3306/s6?charset=utf8",
max_overflow=0, # 超过连接池大小外最多创建的连接
pool_size=5, # 连接池大小
pool_timeout=30, # 池中没有线程最多等待的时间,否则报错
pool_recycle=-1 # 多久之后对线程池中的线程进行一次连接的回收(重置)
) Base.metadata.drop_all(engine) if __name__ == '__main__':
drop_db()
init_db() 创建多个表并包含Fk、M2M关系
创建多个表并包含FK,M2M关系
b.操作数据库表
#!/usr/bin/env python
# -*- coding:utf-8 -*-
from sqlalchemy.orm import sessionmaker
from sqlalchemy import create_engine
from models import Users engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine) # 每次执行数据库操作时,都需要创建一个session
session = Session() # ############# 执行ORM操作 #############
obj1 = Users(name="alex1")
session.add(obj1) # 提交事务
session.commit()
# 关闭session
session.close()
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from db import Users engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine) def task(arg):
session = Session() obj1 = Users(name="alex1")
session.add(obj1) session.commit() for i in range(10):
t = threading.Thread(target=task, args=(i,))
t.start() 多线程执行示例
多线程执行示列
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text from db import Users, Hosts engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine) session = Session() # ################ 添加 ################
"""
obj1 = Users(name="wupeiqi")
session.add(obj1) session.add_all([
Users(name="wupeiqi"),
Users(name="alex"),
Hosts(name="c1.com"),
])
session.commit()
""" # ################ 删除 ################
"""
session.query(Users).filter(Users.id > 2).delete()
session.commit()
"""
# ################ 修改 ################
"""
session.query(Users).filter(Users.id > 0).update({"name" : "099"})
session.query(Users).filter(Users.id > 0).update({Users.name: Users.name + "099"}, synchronize_session=False)
session.query(Users).filter(Users.id > 0).update({"age": Users.age + 1}, synchronize_session="evaluate")
session.commit()
"""
# ################ 查询 ################
"""
r1 = session.query(Users).all()
r2 = session.query(Users.name.label('xx'), Users.age).all()
r3 = session.query(Users).filter(Users.name == "alex").all()
r4 = session.query(Users).filter_by(name='alex').all()
r5 = session.query(Users).filter_by(name='alex').first()
r6 = session.query(Users).filter(text("id<:value and name=:name")).params(value=224, name='fred').order_by(Users.id).all()
r7 = session.query(Users).from_statement(text("SELECT * FROM users where name=:name")).params(name='ed').all()
""" session.close() 基本增删改查示例
基本的增删改查
# 条件
ret = session.query(Users).filter_by(name='alex').all()
ret = session.query(Users).filter(Users.id > 1, Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.between(1, 3), Users.name == 'eric').all()
ret = session.query(Users).filter(Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(~Users.id.in_([1,3,4])).all()
ret = session.query(Users).filter(Users.id.in_(session.query(Users.id).filter_by(name='eric'))).all()
from sqlalchemy import and_, or_
ret = session.query(Users).filter(and_(Users.id > 3, Users.name == 'eric')).all()
ret = session.query(Users).filter(or_(Users.id < 2, Users.name == 'eric')).all()
ret = session.query(Users).filter(
or_(
Users.id < 2,
and_(Users.name == 'eric', Users.id > 3),
Users.extra != ""
)).all() # 通配符
ret = session.query(Users).filter(Users.name.like('e%')).all()
ret = session.query(Users).filter(~Users.name.like('e%')).all() # 限制
ret = session.query(Users)[1:2] # 排序
ret = session.query(Users).order_by(Users.name.desc()).all()
ret = session.query(Users).order_by(Users.name.desc(), Users.id.asc()).all() # 分组
from sqlalchemy.sql import func ret = session.query(Users).group_by(Users.extra).all()
ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).all() ret = session.query(
func.max(Users.id),
func.sum(Users.id),
func.min(Users.id)).group_by(Users.name).having(func.min(Users.id) >2).all() # 连表 ret = session.query(Users, Favor).filter(Users.id == Favor.nid).all() ret = session.query(Person).join(Favor).all() ret = session.query(Person).join(Favor, isouter=True).all() # 组合
q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union(q2).all() q1 = session.query(Users.name).filter(Users.id > 2)
q2 = session.query(Favor.caption).filter(Favor.nid < 2)
ret = q1.union_all(q2).all()
常用操作
#!/usr/bin/env python
# -*- coding:utf-8 -*-
import time
import threading from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, Integer, String, ForeignKey, UniqueConstraint, Index
from sqlalchemy.orm import sessionmaker, relationship
from sqlalchemy import create_engine
from sqlalchemy.sql import text
from sqlalchemy.engine.result import ResultProxy
from db import Users, Hosts engine = create_engine("mysql+pymysql://root:123@127.0.0.1:3306/s6", max_overflow=0, pool_size=5)
Session = sessionmaker(bind=engine) session = Session() # 查询
# cursor = session.execute('select * from users')
# result = cursor.fetchall() # 添加
cursor = session.execute('insert into users(name) values(:value)',params={"value":'wupeiqi'})
session.commit()
print(cursor.lastrowid) session.close() 原生SQL语句
原生的SQL
flsk-SQLALchemy的更多相关文章
- sqlalchemy学习
sqlalchemy官网API参考 原文作为一个Pythoner,不会SQLAlchemy都不好意思跟同行打招呼! #作者:笑虎 #链接:https://zhuanlan.zhihu.com/p/23 ...
- tornado+sqlalchemy+celery,数据库连接消耗在哪里
随着公司业务的发展,网站的日活数也逐渐增多,以前只需要考虑将所需要的功能实现就行了,当日活越来越大的时候,就需要考虑对服务器的资源使用消耗情况有一个清楚的认知. 最近老是发现数据库的连接数如果 ...
- 冰冻三尺非一日之寒-mysql(orm/sqlalchemy)
第十二章 mysql ORM介绍 2.sqlalchemy基本使用 ORM介绍: orm英文全称object relational mapping,就是对象映射关系程序,简单来说我们类似pyt ...
- Python 【第六章】:Python操作 RabbitMQ、Redis、Memcache、SQLAlchemy
Memcached Memcached 是一个高性能的分布式内存对象缓存系统,用于动态Web应用以减轻数据库负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态.数据库驱动网站的速度 ...
- SQLAlchemy(一)
说明 SQLAlchemy只是一个翻译的过程,我们通过类来操作数据库,他会将我们的对应数据转换成SQL语句. 运用ORM创建表 #!/usr/bin/env python #! -*- coding: ...
- sqlalchemy(二)高级用法
sqlalchemy(二)高级用法 本文将介绍sqlalchemy的高级用法. 外键以及relationship 首先创建数据库,在这里一个user对应多个address,因此需要在address上增 ...
- sqlalchemy(一)基本操作
sqlalchemy(一)基本操作 sqlalchemy采用简单的Python语言,为高效和高性能的数据库访问设计,实现了完整的企业级持久模型. 安装 需要安装MySQLdb pip install ...
- python SQLAlchemy
这里我们记录几个python SQLAlchemy的使用例子: 如何对一个字段进行自增操作 user = session.query(User).with_lockmode('update').get ...
- Python-12-MySQL & sqlalchemy ORM
MySQL MySQL相关文章这里不在赘述,想了解的点击下面的链接: >> MySQL安装 >> 数据库介绍 && MySQL基本使用 >> MyS ...
- 20.Python笔记之SqlAlchemy使用
Date:2016-03-27 Title:20.Python笔记之SqlAlchemy使用 Tags:python Category:Python 作者:刘耀 博客:www.liuyao.me 一. ...
随机推荐
- UESTC 491 Tricks in Bits
Tricks in Bits Time Limit: 1000MS Memory Limit: 65535KB 64bit IO Format: %lld & %llu Submit ...
- 原文来自 url get
w http://www.tuicool.com/articles/BvYbEvR http://36kr.com/p/5069371.html?utm_source=tuicool&utm_ ...
- Java你不知道的那些事儿—Java隐藏特性
转载自:http://www.cnblogs.com/lanxuezaipiao/p/3460373.html 每 种语言都很强大,不管你是像我一样的初学者还是有过N年项目经验的大神,总会有你不知道的 ...
- [转载]在服务器端判断request来自Ajax请求(异步)还是传统请求(同步),x-requested-with XMLHttpRequest
在服务器端判断request来自Ajax请求(异步)还是传统请求(同步) 在服务器端判断request来自Ajax请求(异步)还是传统请求(同步): 两种请求在请求的Header不同,Ajax 异步 ...
- 字符串之strcmp
功能:比较两个字符串的ascII码大小 输入:两个字符串 返回值:相等为0,大于为大于零,小于为小于零 #include <iostream> #include <assert.h& ...
- Oracle 11G无法导出空表的解决办法
11G中有个新特性,当表无数据时,不分配segment,以节省空间解决方法:1.insert一行,再rollback就产生segment了.该方法是在在空表中插入数据,再删除,则产生segment.导 ...
- $.messager.confirm修改弹出框按钮提示文字
$.messager.confirm 默认提示语为“OK”和“Cancel”.引入中文控件后变为“确定”和“取消” <script src="../js/locale/easyui-l ...
- AJAX实现弹窗显示详情,全选和批量删除
以Nation表为例,将Nation表显示在页面上,每一行数据前面加上复选框,后面加上查看详情,点击以弹窗形式显示每一行的数据,并且在表格最后一行加上全选复选框,点击选中全部数据,后面跟一个批量删除按 ...
- web前端基础知识学习网站推介
内容:一.基础知识及学习资料1. HTML入门学习:http://www.w3school.com.cn/html/index.aspHTML5 入门学习:http://www.w3school.co ...
- OpenGL学习进程(7)第五课:点、边和图形(二)边
本节是OpenGL学习的第五个课时,下面介绍OpenGL边的相关知识: (1)边的概念: 数学上的直线没有宽度,但OpenGL的直线则是有宽度的.同时,OpenGL的直线必须是有限长度,而不是像数学概 ...