工程优化方法中的“最速下降法”和“DFP拟牛顿法”的 C 语言实现
这个小程序是研一上学期的“工程优化”课程的大作业。其实这题本可以用 MATLAB 实现,但是我为了锻炼自己薄弱的编码能力,改为用 C 语言实现。这样,就得自己实现矩阵的运算(加减乘除、求逆、拷贝);难点是求偏导,通过查资料,发现可以通过导数定义,即取极限的方法,来逐步逼近求得梯度;另外,没法做到输入任意公式,只能将公式硬编码为函数,而求导函数需要传入公式,就直接传入函数指针了。思考、编码、调试、测试共耗费两周左右时间,完成于 2013/01/10。虽然为了认真做这个大作业而耽误了期末考试的复习,但我不后悔做出的选择,因为我学到了我觉得真正有用的东西。
源码托管在 Github 上:点此打开链接
以下为完整的作业报告:
一、题目
用最速下降法和DFP拟牛顿法求解以下函数的最小值点以及最小值:
1.1 ,其中,
,
,
1.2 ,其中,
,
,
二、算法
2.1最速下降法(steepest descent method)
算法步骤:
(1)取初始点,精度
,令
;
(2)计算,若
,则停,
;否则转(3);
(3)一维搜索:,
令,转(2)。
2.2拟牛顿法(DFP)
算法步骤:
(1)取初始点,允许误差
;
(2)求,若
,令
,算法停止;否则转(3);
(3)令;
(4)令;
(5)求:
,令
;
(6)求,若
,令
,算法停止;否则转(6);
(7)若,则令
,
,转(3);
否则令,
,
计算;
令,转(4)。
2.3成功—失败法(用于一维搜索)
算法步骤:
(1)取初始点,初始步长
和精度
,计算
;
(2)计算;
(3)若(搜索成功),令
;
若(搜索失败),若
,令
,停止迭代;
否者,令,转(2);
三、语言及算法实现说明
3.1算法实现语言及平台:
C语言+VC6.0(Debug模式)。
3.2几个部分的思考:
(1)由于实现实时输入函数多项式比较困难,本程序将函数多项式写成模块,存入程序文件中,由于程序使用函数指针,故可以陆续添加函数多项式而不必修改核心算法的代码;
(2)由于函数不同,取值范围不同,则算法需要不同的精度和步长,才能求得精确的结果,故本程序提供接口让用户指定;
(3)为了实现实时输入变量维度,本程序使用动态内存分配,建立多维数组,模拟矩阵,用于存储多维变量;
3.3算法实现的重难点分析:
(1)偏导数的求解:本程序使用偏导数的定义,即极限方法,求解指定点的函数值;
(2)DFP算法中的计算:本程序用多维数组来模拟矩阵进行运算。
四、程序中的主要模块说明(完整程序及注释见附录)
4.1待求解的两个函数:
其中vars为多维变量,n代表维度,这两个模块返回函数在指定点的值。
/* 求函数1在指定点的值 */
double fun1(double **vars, int n);
/* 求函数2在指定点的值 */
double fun2(double **vars, int n);
4.2利用偏导的定义求某个点的偏导数:
其中f为指定函数,vars为多维变量,grads为梯度,n为维度,prec为用户指定的精度;该模块求出函数的偏导存入矩阵grads中。
/* 用极限方法求指定点的偏导/梯度 */
void differ(double (*f)(double **vars, int n), double **vars, double **grads, int n, double prec);
4.3成功—失败法,用于一维搜索:
其中f代表指定函数,vars为多维变量,d为二维搜索的方向,n为维度,prec为用户指定的进度,h为用户指定的步长;
该模块将搜索到的所对应的多维变量存入矩阵vars。
/* 成功失败法,用于一维搜索 */
void suc_fail(double (*f)(double **vars, int n), double **vars, double **d, int n, double prec, double h);
4.4两个核心算法:
其中fun为待解函数的标号,n为维度,prec为用户指定的精度,h为用户指定的用于一维搜索的步长;
这里这两个模块求出指定函数的最小值点和最小值并输出。
/* 最速下降法(Speedest Descent Method)*/
void SD(int fun, int n, double prec, double h);
/* DFP拟牛顿法 */
void DFP(int fun, int n, double prec, double h);
五、程序使用说明
本程序将最速下降法和DFP法整合在一起,精度、步长、维度可由用户指定:
(1)选择方法(只输入序号,‘0’退出);
(2)选择函数(只输入序号);
(3)输入精度值();
(4)输入一维搜索的步长;
(5)输入变量维度;
(6)输入变量的每个分量;
回车后程序开始使用指定方法对指定函数进行计算,计算过程中输出迭代次数;
最后输出结果:最小值点和最小值。
如下图所示(下一页):
六、运行结果及分析
6.1精度选择:
(1)如下用最速下降法求函数1,精度取,步长取1,初值取(5,5,5),求解时陷入了无限迭代:
……
(2)对于(1)的输入,仅修改精度为,仅迭代3次就求出了结果,且达到很高的精度,变量的三个分量和最优值都约等于0:
6.1.1小结
当精度值选择太小,虽然可能得到更精确的结果,但会陷入死循环。当精度要求放松了一点,反而快速求出了精确结果,可见精度要选着适当,不可太大,也不可太小。以下试验就选择为精度值。
6.2一维搜索的步长选择:
(1)如下用最速下降法求函数1,精度取,步长取0.1,初值取(3,3,3),迭代3次求出结果,但是误差很大:
(2)针对(1),仅将步长改为0.5,迭代4次求出结果,精度很高:
(4)如下用最速下降法求函数2,精度取,步长取0.5,
初值取(300,300,300),迭代9次求出结果,但是误差很大:
(5)针对(4),仅将步长改为30,迭代17次求出结果,虽然结果与理想值0还是有一些误差,但比(4)的结果精确了很多:
6.2.1小结
一维搜索的步长也要选择适当,否者求出的结果误差很大。从以上对比可以看出,步长的选取要根据自变量的取值进行相应的调整:函数F1的,变量取3,步长h取0.5时误差较小;函数F2的
,变量取300,步长h取30时误差较小,步长h取值为变量x取值的10%左右时误差较小。
6.3比较最速下降法和DFP法:
6.3.1求解函数F1:精度取,步长取0.5,变量分别取(-5,-5,-5)、(5,5,5)
(1) 最速下降法
(2) DFP
6.3.2求解函数F2:精度取,步长取50,变量取(500,500,500)
(1)最速下降法
(2)DFP
6.3.3小结
由以上两组对比可看出:
(1) 对于函数F1和F2,DFP算法都比最速下降法迭代次数多;
(2) 对于函数F1和F2,DFP算法都比最速下降法结果精确;
工程优化方法中的“最速下降法”和“DFP拟牛顿法”的 C 语言实现的更多相关文章
- 提升网速的路由器优化方法(UPnP、QoS、MTU、交换机模式、无线中继)
在上一篇<为什么房间的 Wi-Fi 信号这么差>中,猫哥从微波炉.相对论.人存原理出发,介绍了影响 Wi-Fi 信号强弱的几大因素,接下来猫哥再给大家介绍几种不用升级带宽套餐也能提升网速的 ...
- JPG、PNG和GIF图片的基本原理及优化方法
一提到图片,我们就不得不从位图开始说起,位图图像(bitmap),也称为点阵图像或绘制图像,是由称作像素(图片元素)的单个点组成的.这些点可以进行不同的排列和染色以构成一副图片.当放大位图时,可以看见 ...
- Android中ListView的几种常见的优化方法
Android中的ListView应该算是布局中几种最常用的组件之一了,使用也十分方便,下面将介绍ListView几种比较常见的优化方法: 首先我们给出一个没有任何优化的Listview的Adapte ...
- [Android]ListView的Adapter.getView()方法中延迟加载图片的优化
以下内容为原创,欢迎转载,转载请注明 来自天天博客:http://www.cnblogs.com/tiantianbyconan/p/4139998.html 举个例子吧,以好友列表为例 ListVi ...
- Android中的布局优化方法
http://blog.csdn.net/rwecho/article/details/8951009 Android开发中的布局很重要吗?那是当然.一切的显示样式都是由这个布局决定的,你说能不重要吗 ...
- Android 中对于图片的内存优化方法
Android 中对于图片的内存优化方法,需要的朋友可以参考一下 1. 对图片本身进行操作 尽量不要使用 setImageBitmap.setImageResource. BitmapFact ...
- 一:优化Docker中的Spring Boot应用:单层镜像方法
优化Docker中的Spring Boot应用:单层镜像方法 1.Docker关键概念 2.镜像层内容很重要 3.镜像层影响部署 4.Docker中的Spring Boot应用 5.单层方法 5.1 ...
- Caffe学习系列(8):solver优化方法
上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: &q ...
- 竞价广告系统-逻辑回归优化方法-L-BFGS
逻辑回归优化方法-L-BFGS 逻辑回归的优化方法是一个经典的问题,如果我们把它视为一个最大熵模型,那么我们知道最早的优化方法是IIS,这个方法就不细讲了,因为它速度很慢.后来发现在最优化领域中非常常 ...
随机推荐
- python系列七:Python3字典dict
#!/usr/bin/python #Python3 字典#字典是支持无限极嵌套的citys={ '北京':{ '朝阳':['国贸','CBD','天阶','我爱我家','链接地产 ...
- ffmpeg参数使用说明2
附录一(ffmpeg参数说明): [参数] [说明] [示例] -i "路径" 指定需要转换的文件路径 -i "C:\nba.wmv" -y 覆盖输出文件,即如 ...
- Ubuntu出现Authentication failure(认证失败)的解决方法(转)
当我们想在刚安装的Linux系统启动某些服务或者想进入root用户时提示认证失败或者权限不够时,原因是刚安装Ubuntu后,root用户默认是未激活的,不允许登录,也不允许使用su命令到转到root用 ...
- Django 之基础续
1.路由系统之动态路由 前言:还记得之前的分页效果,这个如何实现呢?答案就是动态路由. url(r'^detail/(\d+)/$', views.detail), url(r'^detail2/(\ ...
- Loadrunder之脚本篇——关联
关联的原理 关联也属于一钟特殊的参数化.一般参数化的参数来源于一个文件.一个定义的table.通过sql写的一个结果集等,但关联所获得的参数是服务器响应请求所返回的一个符合条件的.动态的值. 例子:常 ...
- asp.net,关于Listview+DataPager控件使用
关于Listview+DataPager控件使用1.DAL层,根据开始条数+结束条数查询数据.2.BLL层,startRowIndex和maximumRows进行查询.(startRowIndex + ...
- CSS3 3D旋转按钮对话框
在线演示 本地下载
- Django用户注册、邮箱验证实践
算法流程如下:1)处理用户注册数据,存入数据库,is_activity字段设置为False,用户未认证之前不允许登陆2)产生token,生成验证连接URL3)发送验证邮件4)用户通过认证邮箱点击验证连 ...
- MongoDB快速入门(四)- 插入文档
插入文档 将数据插入到MongoDB集合,需要使用MongoDB 的 insert() 方法. 语法 insert()命令的基本语法如下: >db.COLLECTION_NAME.insert( ...
- 用vim写python脚本的自动缩进格式设置