咳咳。C++11 加入了线程库,从此告别了标准库不支持并发的历史。然而 c++ 对于多线程的支持还是比较低级,稍微高级一点的用法都需要自己去实现,譬如线程池、信号量等。线程池(thread pool)这个东西,在面试上多次被问到,一般的回答都是:“管理一个任务队列,一个线程队列,然后每次取一个任务分配给一个线程去做,循环往复。” 貌似没有问题吧。但是写起程序来的时候就出问题了。

废话不多说,先上实现,然后再啰嗦。(dont talk, show me ur code !)

代码实现

 #pragma once
#ifndef THREAD_POOL_H
#define THREAD_POOL_H #include <vector>
#include <queue>
#include <thread>
#include <atomic>
#include <condition_variable>
#include <future>
#include <functional>
#include <stdexcept> namespace std
{
#define MAX_THREAD_NUM 256 //线程池,可以提交变参函数或拉姆达表达式的匿名函数执行,可以获取执行返回值
//不支持类成员函数, 支持类静态成员函数或全局函数,Opteron()函数等
class threadpool
{
using Task = std::function<void()>;
// 线程池
std::vector<std::thread> pool;
// 任务队列
std::queue<Task> tasks;
// 同步
std::mutex m_lock;
// 条件阻塞
std::condition_variable cv_task;
// 是否关闭提交
std::atomic<bool> stoped;
//空闲线程数量
std::atomic<int> idlThrNum; public:
inline threadpool(unsigned short size = ) :stoped{ false }
{
idlThrNum = size < ? : size;
for (size = ; size < idlThrNum; ++size)
{ //初始化线程数量
pool.emplace_back(
[this]
{ // 工作线程函数
while(!this->stoped)
{
std::function<void()> task;
{ // 获取一个待执行的 task
std::unique_lock<std::mutex> lock{ this->m_lock };// unique_lock 相比 lock_guard 的好处是:可以随时 unlock() 和 lock()
this->cv_task.wait(lock,
[this] {
return this->stoped.load() || !this->tasks.empty();
}
); // wait 直到有 task
if (this->stoped && this->tasks.empty())
return;
task = std::move(this->tasks.front()); // 取一个 task
this->tasks.pop();
}
idlThrNum--;
task();
idlThrNum++;
}
}
);
}
}
inline ~threadpool()
{
stoped.store(true);
cv_task.notify_all(); // 唤醒所有线程执行
for (std::thread& thread : pool) {
//thread.detach(); // 让线程“自生自灭”
if(thread.joinable())
thread.join(); // 等待任务结束, 前提:线程一定会执行完
}
} public:
// 提交一个任务
// 调用.get()获取返回值会等待任务执行完,获取返回值
// 有两种方法可以实现调用类成员,
// 一种是使用 bind: .commit(std::bind(&Dog::sayHello, &dog));
// 一种是用 mem_fn: .commit(std::mem_fn(&Dog::sayHello), &dog)
template<class F, class... Args>
auto commit(F&& f, Args&&... args) ->std::future<decltype(f(args...))>
{
if (stoped.load()) // stop == true ??
throw std::runtime_error("commit on ThreadPool is stopped."); using RetType = decltype(f(args...)); // typename std::result_of<F(Args...)>::type, 函数 f 的返回值类型
auto task = std::make_shared<std::packaged_task<RetType()> >(
std::bind(std::forward<F>(f), std::forward<Args>(args)...)
); // wtf !
std::future<RetType> future = task->get_future();
{ // 添加任务到队列
std::lock_guard<std::mutex> lock{ m_lock };//对当前块的语句加锁 lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock()
tasks.emplace(
[task]()
{ // push(Task{...})
(*task)();
}
);
}
cv_task.notify_one(); // 唤醒一个线程执行 return future;
} //空闲线程数量
int idlCount() { return idlThrNum; } }; } #endif

代码不多吧,上百行代码就完成了 线程池, 并且, 看看 commit,  哈,  不是固定参数的, 无参数数量限制!  这得益于可变参数模板.

怎么使用?

看下面代码(展开查看)

 #include "threadpool.h"
#include <iostream> void fun1(int slp)
{
printf(" hello, fun1 ! %d\n" ,std::this_thread::get_id());
if (slp>) {
printf(" ======= fun1 sleep %d ========= %d\n",slp, std::this_thread::get_id());
std::this_thread::sleep_for(std::chrono::milliseconds(slp));
}
} struct gfun {
int operator()(int n) {
printf("%d hello, gfun ! %d\n" ,n, std::this_thread::get_id() );
return ;
}
}; class A {
public:
static int Afun(int n = ) { //函数必须是 static 的才能直接使用线程池
std::cout << n << " hello, Afun ! " << std::this_thread::get_id() << std::endl;
return n;
} static std::string Bfun(int n, std::string str, char c) {
std::cout << n << " hello, Bfun ! "<< str.c_str() <<" " << (int)c <<" " << std::this_thread::get_id() << std::endl;
return str;
}
}; int main()
try {
std::threadpool executor{ };
A a;
std::future<void> ff = executor.commit(fun1,);
std::future<int> fg = executor.commit(gfun{},);
std::future<int> gg = executor.commit(a.Afun, ); //IDE提示错误,但可以编译运行
std::future<std::string> gh = executor.commit(A::Bfun, ,"mult args", );
std::future<std::string> fh = executor.commit([]()->std::string { std::cout << "hello, fh ! " << std::this_thread::get_id() << std::endl; return "hello,fh ret !"; }); std::cout << " ======= sleep ========= " << std::this_thread::get_id() << std::endl;
std::this_thread::sleep_for(std::chrono::microseconds()); for (int i = ; i < ; i++) {
executor.commit(fun1,i* );
}
std::cout << " ======= commit all ========= " << std::this_thread::get_id()<< " idlsize="<<executor.idlCount() << std::endl; std::cout << " ======= sleep ========= " << std::this_thread::get_id() << std::endl;
std::this_thread::sleep_for(std::chrono::seconds()); ff.get(); //调用.get()获取返回值会等待线程执行完,获取返回值
std::cout << fg.get() << " " << fh.get().c_str()<< " " << std::this_thread::get_id() << std::endl; std::cout << " ======= sleep ========= " << std::this_thread::get_id() << std::endl;
std::this_thread::sleep_for(std::chrono::seconds()); std::cout << " ======= fun1,55 ========= " << std::this_thread::get_id() << std::endl;
executor.commit(fun1,).get(); //调用.get()获取返回值会等待线程执行完 std::cout << "end... " << std::this_thread::get_id() << std::endl; std::threadpool pool();
std::vector< std::future<int> > results; for (int i = ; i < ; ++i) {
results.emplace_back(
pool.commit([i] {
std::cout << "hello " << i << std::endl;
std::this_thread::sleep_for(std::chrono::seconds());
std::cout << "world " << i << std::endl;
return i*i;
})
);
}
std::cout << " ======= commit all2 ========= " << std::this_thread::get_id() << std::endl; for (auto && result : results)
std::cout << result.get() << ' ';
std::cout << std::endl;
return ;
}
catch (std::exception& e) {
std::cout << "some unhappy happened... " << std::this_thread::get_id() << e.what() << std::endl;
}

为了避嫌,先进行一下版权说明:代码是 me “写”的,但是思路来自 Internet, 特别是这个线程池实现(基本 copy 了这个实现,加上这位同学的实现和解释,好东西值得 copy ! 然后综合更改了下,更加简洁)。

实现原理

接着前面的废话说。“管理一个任务队列,一个线程队列,然后每次取一个任务分配给一个线程去做,循环往复。” 这个思路有神马问题?线程池一般要复用线程,所以如果是取一个 task 分配给某一个 thread,执行完之后再重新分配,在语言层面基本都是不支持的:一般语言的 thread 都是执行一个固定的 task 函数,执行完毕线程也就结束了(至少 c++ 是这样)。so 要如何实现 task 和 thread 的分配呢?

让每一个 thread 都去执行调度函数:循环获取一个 task,然后执行之。

idea 是不是很赞!保证了 thread 函数的唯一性,而且复用线程执行 task 。

即使理解了 idea,代码还是需要详细解释一下的。

  1. 一个线程 pool,一个任务队列 queue ,应该没有意见;
  2. 任务队列是典型的生产者-消费者模型,本模型至少需要两个工具:一个 mutex + 一个条件变量,或是一个 mutex + 一个信号量。mutex 实际上就是锁,保证任务的添加和移除(获取)的互斥性,一个条件变量是保证获取 task 的同步性:一个 empty 的队列,线程应该等待(阻塞);
  3. atomic<bool> 本身是原子类型,从名字上就懂:它们的操作 load()/store() 是原子操作,所以不需要再加 mutex。

c++语言细节

即使懂原理也不代表能写出程序,上面用了众多c++11的“奇技淫巧”,下面简单描述之。

  1. using Task = function<void()> 是类型别名,简化了 typedef 的用法。function<void()> 可以认为是一个函数类型,接受任意原型是 void() 的函数,或是函数对象,或是匿名函数。void() 意思是不带参数,没有返回值。
  2. pool.emplace_back([this]{...}) 和 pool.push_back([this]{...}) 功能一样,只不过前者性能会更好;
  3. pool.emplace_back([this]{...}) 是构造了一个线程对象,执行函数是拉姆达匿名函数 ;
  4. 所有对象的初始化方式均采用了 {},而不再使用 () 方式,因为风格不够一致且容易出错;
  5. 匿名函数: [this]{...} 不多说。[] 是捕捉器,this 是引用域外的变量 this指针, 内部使用死循环, 由cv_task.wait(lock,[this]{...}) 来阻塞线程;
  6. delctype(expr) 用来推断 expr 的类型,和 auto 是类似的,相当于类型占位符,占据一个类型的位置;auto f(A a, B b) -> decltype(a+b) 是一种用法,不能写作 decltype(a+b) f(A a, B b),为啥?! c++ 就是这么规定的!
  7. commit 方法是不是略奇葩!可以带任意多的参数,第一个参数是 f,后面依次是函数 f 的参数!(注意:参数要传struct/class的话,建议用pointer,小心变量的作用域) 可变参数模板是 c++11 的一大亮点,够亮!至于为什么是 Arg... 和 arg... ,因为规定就是这么用的!
  8. commit 直接使用只能调用stdcall函数,但有两种方法可以实现调用类成员,一种是使用   bind: .commit(std::bind(&Dog::sayHello, &dog)); 一种是用 mem_fn: .commit(std::mem_fn(&Dog::sayHello), &dog);
  9. make_shared 用来构造 shared_ptr 智能指针。用法大体是 shared_ptr<int> p = make_shared<int>(4) 然后 *p == 4 。智能指针的好处就是, 自动 delete !
  10. bind 函数,接受函数 f 和部分参数,返回currying后的匿名函数,譬如 bind(add, 4) 可以实现类似 add4 的函数!
  11. forward() 函数,类似于 move() 函数,后者是将参数右值化,前者是... 肿么说呢?大概意思就是:不改变最初传入的类型的引用类型(左值还是左值,右值还是右值);
  12. packaged_task 就是任务函数的封装类,通过 get_future 获取 future , 然后通过 future 可以获取函数的返回值(future.get());packaged_task 本身可以像函数一样调用 () ;
  13. queue 是队列类, front() 获取头部元素, pop() 移除头部元素;back() 获取尾部元素,push() 尾部添加元素;
  14. lock_guard 是 mutex 的 stack 封装类,构造的时候 lock(),析构的时候 unlock(),是 c++ RAII 的 idea;
  15. condition_variable cv; 条件变量, 需要配合 unique_lock 使用;unique_lock 相比 lock_guard 的好处是:可以随时 unlock() 和 lock()。 cv.wait() 之前需要持有 mutex,wait 本身会 unlock() mutex,如果条件满足则会重新持有 mutex。
  16. 最后线程池析构的时候,join() 可以等待任务都执行完在结束,很安全!

Git

代码保存在git,这里可以获取最新代码: https://github.com/lzpong/threadpool

[copy right from url: http://blog.csdn.net/zdarks/article/details/46994607, https://github.com/progschj/ThreadPool/blob/master/ThreadPool.h]

基于C++11的线程池(threadpool),简洁且可以带任意多的参数的更多相关文章

  1. 基于C++11实现线程池的工作原理

    目录 基于C++11实现线程池的工作原理. 简介 线程池的组成 1.线程池管理器 2.工作线程 3.任务接口, 4.任务队列 线程池工作的四种情况. 1.主程序当前没有任务要执行,线程池中的任务队列为 ...

  2. 基于C++11的线程池实现

    1.线程池 1.1 线程池是什么? 一种线程管理方式. 1.2 为什么用线程池? 线程的创建和销毁都需要消耗系统开销,当线程数量过多,系统开销过大,就会影响缓存局部性和整体性能.而线程池能够在充分利用 ...

  3. 基于C++11的线程池,简洁且可以带任意多的参数

    咳咳.C++11 加入了线程库,从此告别了标准库不支持并发的历史.然而 c++ 对于多线程的支持还是比较低级,稍微高级一点的用法都需要自己去实现,譬如线程池.信号量等.线程池(thread pool) ...

  4. 使用C++11封装线程池ThreadPool

    读本文之前,请务必阅读: 使用C++11的function/bind组件封装Thread以及回调函数的使用 Linux组件封装(五)一个生产者消费者问题示例   线程池本质上是一个生产者消费者模型,所 ...

  5. 基于C++11的线程池

    1.封装的线程对象 class task : public std::tr1::enable_shared_from_this<task> { public: task():exit_(f ...

  6. 高效线程池(threadpool)的实现

    高效线程池(threadpool)的实现 Nodejs编程是全异步的,这就意味着我们不必每次都阻塞等待该次操作的结果,而事件完成(就绪)时会主动回调通知我们.在网络编程中,一般都是基于Reactor线 ...

  7. 面向对象的线程池Threadpool的封装

    线程池是一种多线程处理形式,预先创建好一定数量的线程,将其保存于一个容器中(如vector), 处理过程中将任务添加到队列,然后从容器中取出线程后自动启动这些任务,具体实现如下. 以下是UML图,展示 ...

  8. 线程池ThreadPool的常用方法介绍

    线程池ThreadPool的常用方法介绍 如果您理解了线程池目的及优点后,让我们温故下线程池的常用的几个方法: 1. public static Boolean QueueUserWorkItem(W ...

  9. 【C# 线程】线程池 ThreadPool

    Overview    如今的应用程序越来越复杂,我们常常需要使用<异步编程:线程概述及使用>中提到的多线程技术来提高应用程序的响应速度.这时我们频繁的创建和销毁线程来让应用程序快速响应操 ...

随机推荐

  1. mysql 视图,触发器,存储

    一.视图 概念:其实就是一个临时表. 视图是一个虚拟表(非真实存在的),其本质是[根据SQL语句获取动态的数据库,并为其命名],用户使用时只需使用[名称]即可获取结果集.就可以当做表来使用. # 1. ...

  2. 关于Bootstrap table的回调onLoadSuccess()和onPostBody()使用小结

    关于Bootstrap table的回调onLoadSuccess()和onPostBody()使用小结 Bootstrap table 是一款基于 Bootstrap 的 jQuery 表格插件, ...

  3. win7安装和配置IIS7

    Internet Information Services(IIS,互联网信息服务),是由微软公司提供的基于运行Microsoft Windows的互联网基本服务.IIS意味着你能发布网页, 要在wi ...

  4. 【HDU】4632 Palindrome subsequence(回文子串的个数)

    思路:设dp[i][j] 为i到j内回文子串的个数.先枚举所有字符串区间.再依据容斥原理. 那么状态转移方程为   dp[i][j] = dp[i][j-1] + dp[i+1][j] - dp[i+ ...

  5. C#网络编程(订立协议和发送文件) - Part.4

    文件传输 前面两篇文章所使用的范例都是传输字符串,有的时候我们可能会想在服务端和客户端之间传递文件.比如,考虑这样一种情况,假如客户端显示了一个菜单,当我们输入S1.S2或S3(S为Send缩写)时, ...

  6. c#学习笔记 VS编辑器常用设置

    1.NET Framework 4.0安装好后目录在哪里? C:\Windows\Microsoft.NET\Framework下面 C#中CLR和IL分别是什么含义? CLR common lang ...

  7. 浪潮各机型管理芯片BMC IP(智能平台管理接口)设置

    NF5240m3/NF5140m3/NF5280m3/SA5212H2/NP5540M3NF5270M3/NF5170M3/NF8420m3 IPMI主板集成管理芯片BMC IP 设置开机按DEL键进 ...

  8. 使用spring框架的JdbcTemplate实现对Oracle数据库的简单操作实例

    最近实现了一个小功能,针对Oracle数据库两张关联表进行查询和修改,因为比较简单,所以选择了spring框架里的JdbcTemplate.JdbcTemplate算是老古董了,是当年spring为了 ...

  9. UniDac 使用日记(转)

    UniDAC使用日记 1.        UniQuery默认状态为行提交,使用前根据需要设置readonly或cachedupdates属性 2.        UniQuery.Filter默认大 ...

  10. 小程序切换账户拉取仓库文件的appid提示

    小程序切换账户拉取仓库文件,拉取后appid会提示项目不是当前appid的项目,因为切换了账户,而每个小程序账户只有一个appid,所以会冲突 去project.config.json里吧appid改 ...