最近BZOJ炸了,而我的博客上又更新了一些基本知识,所以这里刷一些裸题,用以丰富知识性博客

  POJ2823   滑动的窗口

  这是一道经典的单调队题,我记得我刚学的时候就是用这道题作为单调队列的例题,算一道比较基本的题目

  先贴题目

Description

An array of size n ≤ 106 is given to you. There is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves rightwards by one position. Following is an example: 
The array is [1 3 -1 -3 5 3 6 7], and k is 3.

Window position Minimum value Maximum value
[1  3  -1] -3  5  3  6  7  -1 3
 1 [3  -1  -3] 5  3  6  7  -3 3
 1  3 [-1  -3  5] 3  6  7  -3 5
 1  3  -1 [-3  5  3] 6  7  -3 5
 1  3  -1  -3 [5  3  6] 7  3 6
 1  3  -1  -3  5 [3  6  7] 3 7

Your task is to determine the maximum and minimum values in the sliding window at each position. 

Input

The input consists of two lines. The first line contains two integers n and k which are the lengths of the array and the sliding window. There are n integers in the second line. 

Output

There are two lines in the output. The first line gives the minimum values in the window at each position, from left to right, respectively. The second line gives the maximum values. 

Sample Input

8 3
1 3 -1 -3 5 3 6 7

Sample Output

-1 -3 -3 -3 3 3
3 3 5 5 6 7
  这道题的题目经过思考发现是关于决策的,而状态的转移又有固定的模式,所以是DP。
  那么DP方程是什么捏?
  这个经思考很好得出f[i]=max(f[i],a[k])和g[i]=min(g[i],a[k]),k都是从i-k+1到i;
  那么显然的,这个方法不TLE就见鬼了。虽然题目给了你12秒但是你也不能这样胡做
  所以我们考虑更优的解法;
  很容易看出来,我们原方程的每个i的决策与前一个或后一个决策都有k-1个决策重复,而对于每一个决策k的结果,都和i无关,所以我们可以优化这一过程。
  因为当我们更新完第i个位置的最优解的时候,下一个元素的最优解可以用只判断一个元素来更新。
  所以就可以用单调队列了啊(不会的面壁)。
然后愉快的贴出代码。
 #include<cstdio>
#include<cstring>
int quq[],ass,n,k,star,a[],time[];
int main()
{ scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)scanf("%d",a+i);
star=,ass=;
quq[star]=a[];
time[ass]=;
for(int i=;i<=k;i++)
{
while(a[i]<=quq[ass]&&ass>=star)--ass;
quq[++ass]=a[i];
time[ass]=i;
}
printf("%d ",quq[star]);
for(int i=k+;i<=n;i++)
{
if(time[star]<=i-k)star++;
while(a[i]<=quq[ass]&&ass>=star)--ass;
quq[++ass]=a[i];
time[ass]=i;
printf("%d ",quq[star]);
}
printf("\n");
star=,ass=;
quq[star]=a[];
time[ass]=;
for(int i=;i<=k;i++)
{
while(a[i]>=quq[ass]&&ass>=star)--ass;
quq[++ass]=a[i];
time[ass]=i;
}
printf("%d ",quq[star]);
for(int i=k+;i<=n;i++)
{
if(time[star]<=i-k)star++;
while(a[i]>=quq[ass]&&ass>=star)--ass;
quq[++ass]=a[i];
time[ass]=i;
printf("%d ",quq[star]);
}
return ;
}

 

刷题向》POJ2823 单调队列裸题(<不会做,请自裁>系列)的更多相关文章

  1. [Usaco2006 Mar]Mooo 奶牛的歌声(单调栈裸题)

    1657: [Usaco2006 Mar]Mooo 奶牛的歌声 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 961  Solved: 679[Submi ...

  2. luoguP1886 滑动窗口(单调队列模板题)

    题目链接:https://www.luogu.org/problem/P1886#submit 题意:给定n个数,求大小为k的滑动窗口中最小值和最大值. 思路:单调队列模板题. AC代码: #incl ...

  3. Sliding Window POJ - 2823 单调队列模板题

    Sliding Window POJ - 2823 单调队列模板题 题意 给出一个数列 并且给出一个数m 问每个连续的m中的最小\最大值是多少,并输出 思路 使用单调队列来写,拿最小值来举例 要求区间 ...

  4. poj2823:单调队列入门题

    今天学习了一下单调队列这种数据结构,思想不是很难 参考资料:http://www.cnblogs.com/Jason-Damon/archive/2012/04/19/2457889.html 然后自 ...

  5. 2019年牛客多校第三场 F题Planting Trees(单调队列)

    题目链接 传送门 题意 给你一个\(n\times n\)的矩形,要你求出一个面积最大的矩形使得这个矩形内的最大值减最小值小于等于\(M\). 思路 单调队列滚动窗口. 比赛的时候我的想法是先枚举长度 ...

  6. 斜率优化第一题! HDU3507 | 单调队列优化DP

    放一手原题 题解: 第一次写(抄)斜率优化,心里还是有点小激动的.讲一下怎么实现的! 首先我们可以考虑一个朴素的dp:DP[i]表示前i个数字的最少花费,显然我们有一个转移方程 DP[i]=min{D ...

  7. hdu3415 单调队列模板题

    比较裸的单调队列 先求前缀和,枚举所有结束位置1~n+k即可 #include<iostream> #include<cstdio> #include<cstring&g ...

  8. caioj 1172 poj 2823 单调队列过渡题

    给定一个n个数的数列,从左至右输出每个长度为m的数列段内的最大数. 输入:第一行两个整数n和m( 1<= n <= 20 0000,m<=n).下来给出n个整数. 输出:一行一个整数 ...

  9. POJ 2823 Sliding Window(单调队列入门题)

      Sliding Window Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 67218   Accepted: 190 ...

随机推荐

  1. VS 2010 转到COFF期间失败。

    可能的原因是framework 版本不匹配,我卸载4.5,装4.0后就解决了

  2. linux 权限之所有者所属组

    linux 如何改变文件属性与权限 我们知道档案权限对于一个系统的安全重要性,也知道档案的权限对于使用者与群组的相关性, 那如何修改一个档案的属性与权限呢? 我们这里介绍几个常用于群组.拥有者.各种身 ...

  3. volatile 续

    上次的问题在看了一篇博客后有了点理解了 博文地址为 http://www.cnblogs.com/dolphin0520/p/3920373.html 按照文章中写的,在并发编程中,我们通常会遇到以下 ...

  4. lvds配置

    基于Altera FPGA的LVDS配置应用一例 在特权同学发表博文<Cyclone III的LVDS接口注意事项>后,不少网友发邮件询问LVDS具体应用的一些问题.这些网友,归根到底,估 ...

  5. 洛谷 P2863 [USACO06JAN]牛的舞会The Cow Prom

    传送门 题目大意:形成一个环的牛可以跳舞,几个环连在一起是个小组,求几个小组. 题解:tarjian缩点后,求缩的点包含的原来的点数大于1的个数. 代码: #include<iostream&g ...

  6. 洛谷P2661 信息传递

    传送门 题目大意:每个人每一轮可以把消息传给另一个人,问几轮后某个人可以从人 听到自己的消息. 题解:tarjian缩点,求缩点后缩的点包含的最少的点个数. 代码: 正解 #include<io ...

  7. ③SpringBoot中Redis的使用

    本文基于前面的springBoot系列文章进行学习,主要介绍redis的使用. SpringBoot对常用的数据库支持外,对NoSQL 数据库也进行了封装自动化. redis介绍 Redis是目前业界 ...

  8. 在html与php中实现上传图片

    form.html文件 <body> 点击浏览按钮添加要上传的文件(*请上传大小不能大于2M的静态图片)<br /> <form enctype="multip ...

  9. qt的下载地址

    上Qt官网http://www.qt.io/download/想下载Qt,速度很慢,在这里记录下在Qt官网看到的镜像下载地址: 1. 所有Qt版本下载地址: http://download.qt.io ...

  10. 融云rongCloud聊天室的使用

    融云提供了两种途径的接口, 一个是app端,一个是服务器端的. app端 1.连接融云,监听消息 rong = api.require('rongCloud2'); rong.init(functio ...